PubMed:11927577 JSONTXT

Annnotations TAB JSON ListView MergeView

    pqqtest_sentence

    {"project":"pqqtest_sentence","denotations":[{"id":"M_0","span":{"begin":825,"end":865},"obj":"cand:funRiceGene:129-protein kinase"},{"id":"M_1","span":{"begin":825,"end":865},"obj":"cand:funRiceGene:266-BR signaling"},{"id":"M_2","span":{"begin":825,"end":865},"obj":"cand:funRiceGene:309-actin protein"},{"id":"M_3","span":{"begin":825,"end":865},"obj":"cand:funRiceGene:24-receptor kinase"},{"id":"M_4","span":{"begin":825,"end":865},"obj":"cand:funRiceGene:32-transcription regulator"},{"id":"M_5","span":{"begin":825,"end":865},"obj":"cand:funRiceGene:121-chitin elicitor signaling pathway"},{"id":"M_6","span":{"begin":825,"end":865},"obj":"cand:TO:0001025-leaf phosphorus content"},{"id":"M_7","span":{"begin":825,"end":865},"obj":"cand:WTO:0000590-high molecular weight glutenin subunit"},{"id":"M_8","span":{"begin":825,"end":865},"obj":"cand:PO:0025521-unicellular plant gametangium"},{"id":"M_9","span":{"begin":825,"end":865},"obj":"cand:TO:0000645-relative phosphorus concentration"},{"id":"M_10","span":{"begin":825,"end":865},"obj":"cand:PO:0025460-intermediary companion cell"},{"id":"M_11","span":{"begin":732,"end":753},"obj":"cand:TO:0000599-enzyme activity trait"},{"id":"M_12","span":{"begin":732,"end":753},"obj":"cand:TO:0000331-sucrose phosphate synthase activity trait"},{"id":"M_13","span":{"begin":732,"end":753},"obj":"cand:TO:0006048-manganese concentration"},{"id":"M_14","span":{"begin":732,"end":753},"obj":"cand:TO:0005008-acetolactate synthase inhibitor sensitivity"},{"id":"M_15","span":{"begin":732,"end":753},"obj":"cand:TO:0006052-copper concentration"},{"id":"M_16","span":{"begin":732,"end":753},"obj":"cand:TO:0006053-zinc concentration"},{"id":"M_17","span":{"begin":732,"end":753},"obj":"cand:TO:0006049-iron concentration"},{"id":"M_18","span":{"begin":732,"end":753},"obj":"cand:TO:0006050-cobalt concentration"},{"id":"M_19","span":{"begin":732,"end":753},"obj":"cand:TO:0000526-sodium concentration"},{"id":"M_20","span":{"begin":610,"end":639},"obj":"cand:funRiceGene:45-amino acid transporter"},{"id":"M_21","span":{"begin":610,"end":639},"obj":"cand:funRiceGene:129-protein kinase"},{"id":"M_22","span":{"begin":610,"end":639},"obj":"cand:TO:0000305-glutamine synthetase content"},{"id":"M_23","span":{"begin":610,"end":639},"obj":"cand:funRiceGene:211-protein phosphatase"},{"id":"M_24","span":{"begin":610,"end":639},"obj":"cand:TO:0000324-rubisco to soluble protein ratio"},{"id":"M_25","span":{"begin":610,"end":639},"obj":"cand:funRiceGene:58-tyrosine biosynthesis"},{"id":"M_26","span":{"begin":610,"end":639},"obj":"cand:PPO:0002057-ripe seed cone presence"},{"id":"M_27","span":{"begin":610,"end":639},"obj":"cand:funRiceGene:272-rice stripe virus"},{"id":"M_28","span":{"begin":610,"end":639},"obj":"cand:PPO:0002053-seed cone presence"},{"id":"M_29","span":{"begin":610,"end":639},"obj":"cand:TO:0000070-variegated leaf necrosis"},{"id":"M_30","span":{"begin":610,"end":639},"obj":"cand:PO:0025414-secondary thickening meristem"},{"id":"M_31","span":{"begin":515,"end":541},"obj":"cand:funRiceGene:45-amino acid transporter"},{"id":"M_32","span":{"begin":515,"end":541},"obj":"cand:PECO:0007187-salicylic acid exposure"},{"id":"M_33","span":{"begin":515,"end":541},"obj":"cand:PECO:0007070-indole acetic acid exposure"},{"id":"M_34","span":{"begin":515,"end":541},"obj":"cand:TO:0005003-stearic acid content"},{"id":"M_35","span":{"begin":515,"end":541},"obj":"cand:TO:0005002-oleic acid content"},{"id":"M_36","span":{"begin":515,"end":541},"obj":"cand:TO:0002673-amino acid content"},{"id":"M_37","span":{"begin":515,"end":541},"obj":"cand:TO:0020112-phosphorus toxicity"},{"id":"M_38","span":{"begin":515,"end":541},"obj":"cand:funRiceGene:219-phosphate signaling"},{"id":"M_39","span":{"begin":515,"end":541},"obj":"cand:TO:0000704-phosphatase activity trait"},{"id":"M_40","span":{"begin":515,"end":541},"obj":"cand:funRiceGene:152-phosphate homeostasis"},{"id":"M_41","span":{"begin":701,"end":712},"obj":"GeneID:NA"},{"id":"M_42","span":{"begin":549,"end":589},"obj":"GeneID:NA"},{"id":"T60610","span":{"begin":158,"end":173},"obj":"funRiceGene:186, xzyao:9389"},{"id":"T92210","span":{"begin":57,"end":69},"obj":"xzyao:17264"},{"id":"T11448","span":{"begin":112,"end":124},"obj":"xzyao:17264"},{"id":"T24511","span":{"begin":36,"end":42},"obj":"funRiceGene:512"},{"id":"T41587","span":{"begin":95,"end":101},"obj":"funRiceGene:512"},{"id":"T55490","span":{"begin":167,"end":173},"obj":"funRiceGene:512"},{"id":"T28450","span":{"begin":282,"end":288},"obj":"funRiceGene:512"},{"id":"T36768","span":{"begin":345,"end":351},"obj":"funRiceGene:512"},{"id":"T28615","span":{"begin":706,"end":712},"obj":"funRiceGene:512"},{"id":"T5516","span":{"begin":893,"end":899},"obj":"funRiceGene:512"},{"id":"T66981","span":{"begin":923,"end":929},"obj":"funRiceGene:512"},{"id":"T23298","span":{"begin":955,"end":961},"obj":"funRiceGene:512"},{"id":"T23141","span":{"begin":998,"end":1004},"obj":"funRiceGene:512"},{"id":"T90638","span":{"begin":1114,"end":1120},"obj":"funRiceGene:512"},{"id":"T5851","span":{"begin":1250,"end":1256},"obj":"funRiceGene:512"},{"id":"T16657","span":{"begin":1327,"end":1333},"obj":"funRiceGene:512"},{"id":"T67663","span":{"begin":1358,"end":1364},"obj":"funRiceGene:512"},{"id":"T13321","span":{"begin":1488,"end":1494},"obj":"funRiceGene:512"},{"id":"T73992","span":{"begin":1418,"end":1431},"obj":"xzyao:37778"},{"id":"T53351","span":{"begin":36,"end":42},"obj":"funRiceGene:139"},{"id":"T51769","span":{"begin":95,"end":101},"obj":"funRiceGene:139"},{"id":"T57920","span":{"begin":167,"end":173},"obj":"funRiceGene:139"},{"id":"T1220","span":{"begin":282,"end":288},"obj":"funRiceGene:139"},{"id":"T71991","span":{"begin":345,"end":351},"obj":"funRiceGene:139"},{"id":"T70874","span":{"begin":706,"end":712},"obj":"funRiceGene:139"},{"id":"T78309","span":{"begin":893,"end":899},"obj":"funRiceGene:139"},{"id":"T55145","span":{"begin":923,"end":929},"obj":"funRiceGene:139"},{"id":"T46739","span":{"begin":955,"end":961},"obj":"funRiceGene:139"},{"id":"T38577","span":{"begin":998,"end":1004},"obj":"funRiceGene:139"},{"id":"T87987","span":{"begin":1114,"end":1120},"obj":"funRiceGene:139"},{"id":"T793","span":{"begin":1250,"end":1256},"obj":"funRiceGene:139"},{"id":"T43344","span":{"begin":1327,"end":1333},"obj":"funRiceGene:139"},{"id":"T45947","span":{"begin":1358,"end":1364},"obj":"funRiceGene:139"},{"id":"T34266","span":{"begin":1488,"end":1494},"obj":"funRiceGene:139"},{"id":"T99459","span":{"begin":70,"end":80},"obj":"funRiceGene:228"},{"id":"T82084","span":{"begin":125,"end":135},"obj":"funRiceGene:228"},{"id":"T98984","span":{"begin":1514,"end":1524},"obj":"funRiceGene:228"},{"id":"T99431","span":{"begin":57,"end":80},"obj":"xzyao:13088"},{"id":"T22709","span":{"begin":112,"end":135},"obj":"xzyao:13088"},{"id":"T42186","span":{"begin":1038,"end":1046},"obj":"xzyao:17964"},{"id":"T60668","span":{"begin":422,"end":437},"obj":"xzyao:13597"},{"id":"T53472","span":{"begin":463,"end":478},"obj":"xzyao:13597"},{"id":"T2007","span":{"begin":112,"end":140},"obj":"xzyao:22264"},{"id":"M_43","span":{"begin":57,"end":89},"obj":"xzyao:36607"},{"id":"M_44","span":{"begin":81,"end":101},"obj":"xzyao:42281"},{"id":"M_45","span":{"begin":396,"end":421},"obj":"xzyao:7331"},{"id":"M_46","span":{"begin":549,"end":574},"obj":"xzyao:7331"},{"id":"M_47","span":{"begin":62,"end":69},"obj":"WTO:0000130, funRiceGene:18"},{"id":"M_48","span":{"begin":117,"end":124},"obj":"WTO:0000130, funRiceGene:18"},{"id":"M_49","span":{"begin":1506,"end":1513},"obj":"WTO:0000130, funRiceGene:18"},{"id":"M_50","span":{"begin":125,"end":140},"obj":"xzyao:525"},{"id":"M_51","span":{"begin":62,"end":80},"obj":"TO:0000112, funRiceGene:479, xzyao:38628"},{"id":"M_52","span":{"begin":117,"end":135},"obj":"TO:0000112, funRiceGene:479, xzyao:38628"},{"id":"M_53","span":{"begin":1506,"end":1524},"obj":"TO:0000112, funRiceGene:479, xzyao:38628"},{"id":"M_54","span":{"begin":441,"end":457},"obj":"hunflair:NA:Species"},{"id":"M_55","span":{"begin":158,"end":186},"obj":"hunflair:NA:Gene"},{"id":"M_56","span":{"begin":1125,"end":1128},"obj":"hunflair:NA:Chemical"},{"id":"M_57","span":{"begin":515,"end":532},"obj":"hunflair:NA:Chemical"},{"id":"M_58","span":{"begin":376,"end":383},"obj":"hunflair:NA:Chemical"},{"id":"M_59","span":{"begin":272,"end":281},"obj":"hunflair:NA:Chemical"},{"id":"M_60","span":{"begin":621,"end":630},"obj":"hunflair:NA:Chemical"},{"id":"M_61","span":{"begin":1478,"end":1487},"obj":"hunflair:NA:Chemical"},{"id":"M_62","span":{"begin":265,"end":271},"obj":"hunflair:NA:Chemical"},{"id":"M_63","span":{"begin":610,"end":616},"obj":"hunflair:NA:Chemical"},{"id":"M_64","span":{"begin":1471,"end":1477},"obj":"hunflair:NA:Chemical"},{"id":"M_65","span":{"begin":1460,"end":1466},"obj":"hunflair:NA:Species"},{"id":"M_66","span":{"begin":1460,"end":1494},"obj":"hunflair:NA:Gene"},{"id":"M_67","span":{"begin":396,"end":407},"obj":"hunflair:NA:Chemical"},{"id":"M_68","span":{"begin":549,"end":560},"obj":"hunflair:NA:Chemical"},{"id":"M_69","span":{"begin":102,"end":106},"obj":"hunflair:NA:Gene"},{"id":"M_70","span":{"begin":340,"end":344},"obj":"hunflair:NA:Gene"},{"id":"M_71","span":{"begin":701,"end":705},"obj":"hunflair:NA:Gene"},{"id":"M_72","span":{"begin":888,"end":892},"obj":"hunflair:NA:Gene"},{"id":"M_73","span":{"begin":950,"end":954},"obj":"hunflair:NA:Gene"},{"id":"M_74","span":{"begin":993,"end":997},"obj":"hunflair:NA:Gene"},{"id":"M_75","span":{"begin":1109,"end":1113},"obj":"hunflair:NA:Gene"},{"id":"M_76","span":{"begin":1245,"end":1249},"obj":"hunflair:NA:Gene"},{"id":"M_77","span":{"begin":1322,"end":1326},"obj":"hunflair:NA:Gene"},{"id":"M_78","span":{"begin":57,"end":106},"obj":"hunflair:NA:Gene"},{"id":"M_79","span":{"begin":36,"end":42},"obj":"hunflair:NA:Gene"},{"id":"M_80","span":{"begin":95,"end":101},"obj":"hunflair:NA:Gene"},{"id":"M_81","span":{"begin":167,"end":173},"obj":"hunflair:NA:Gene"},{"id":"M_82","span":{"begin":282,"end":288},"obj":"hunflair:NA:Gene"},{"id":"M_83","span":{"begin":345,"end":351},"obj":"hunflair:NA:Gene"},{"id":"M_84","span":{"begin":706,"end":712},"obj":"hunflair:NA:Gene"},{"id":"M_85","span":{"begin":893,"end":899},"obj":"hunflair:NA:Gene"},{"id":"M_86","span":{"begin":923,"end":929},"obj":"hunflair:NA:Gene"},{"id":"M_87","span":{"begin":955,"end":961},"obj":"hunflair:NA:Gene"},{"id":"M_88","span":{"begin":998,"end":1004},"obj":"hunflair:NA:Gene"},{"id":"M_89","span":{"begin":1114,"end":1120},"obj":"hunflair:NA:Gene"},{"id":"M_90","span":{"begin":1250,"end":1256},"obj":"hunflair:NA:Gene"},{"id":"M_91","span":{"begin":1327,"end":1333},"obj":"hunflair:NA:Gene"},{"id":"M_92","span":{"begin":1358,"end":1364},"obj":"hunflair:NA:Gene"},{"id":"M_93","span":{"begin":1488,"end":1494},"obj":"hunflair:NA:Gene"},{"id":"M_94","span":{"begin":396,"end":421},"obj":"hunflair:NA:Gene"},{"id":"M_95","span":{"begin":549,"end":574},"obj":"hunflair:NA:Gene"},{"id":"M_96","span":{"begin":340,"end":351},"obj":"hunflair:NA:Gene"},{"id":"M_97","span":{"begin":701,"end":712},"obj":"hunflair:NA:Gene"},{"id":"M_98","span":{"begin":888,"end":899},"obj":"hunflair:NA:Gene"},{"id":"M_99","span":{"begin":950,"end":961},"obj":"hunflair:NA:Gene"},{"id":"M_100","span":{"begin":993,"end":1004},"obj":"hunflair:NA:Gene"},{"id":"M_101","span":{"begin":1109,"end":1120},"obj":"hunflair:NA:Gene"},{"id":"M_102","span":{"begin":1245,"end":1256},"obj":"hunflair:NA:Gene"},{"id":"M_103","span":{"begin":1322,"end":1333},"obj":"hunflair:NA:Gene"},{"id":"M_104","span":{"begin":265,"end":288},"obj":"hunflair:NA:Gene"},{"id":"M_105","span":{"begin":1471,"end":1494},"obj":"hunflair:NA:Gene"},{"id":"M_106","span":{"begin":1355,"end":1382},"obj":"hunflair:NA:Gene"},{"id":"M_107","span":{"begin":142,"end":146},"obj":"hunflair:NA:Gene"},{"id":"M_108","span":{"begin":57,"end":61},"obj":"hunflair:NA:Species"},{"id":"M_109","span":{"begin":112,"end":116},"obj":"hunflair:NA:Species"},{"id":"M_110","span":{"begin":441,"end":457},"obj":"pubtator:562:Species"},{"id":"M_111","span":{"begin":201,"end":208},"obj":"pubtator:MESH:C038361:Chemical"},{"id":"M_112","span":{"begin":1125,"end":1128},"obj":"pubtator:MESH:D000255:Chemical"},{"id":"M_113","span":{"begin":396,"end":407},"obj":"pubtator:MESH:D005978:Chemical"},{"id":"M_114","span":{"begin":549,"end":560},"obj":"pubtator:MESH:D005978:Chemical"},{"id":"M_115","span":{"begin":376,"end":383},"obj":"pubtator:MESH:D008320:Chemical"},{"id":"M_116","span":{"begin":265,"end":271},"obj":"pubtator:MESH:C047902:Chemical"},{"id":"M_117","span":{"begin":610,"end":616},"obj":"pubtator:MESH:C047902:Chemical"},{"id":"M_118","span":{"begin":1471,"end":1477},"obj":"pubtator:MESH:C047902:Chemical"},{"id":"M_119","span":{"begin":408,"end":409},"obj":"pubtator:MESH:D013455:Chemical"},{"id":"M_120","span":{"begin":561,"end":562},"obj":"pubtator:MESH:D013455:Chemical"},{"id":"M_121","span":{"begin":57,"end":61},"obj":"pubtator:4530:Species"},{"id":"M_122","span":{"begin":112,"end":116},"obj":"pubtator:4530:Species"},{"id":"M_123","span":{"begin":272,"end":281},"obj":"pubtator:MESH:C061951:Chemical"},{"id":"M_124","span":{"begin":621,"end":630},"obj":"pubtator:MESH:C061951:Chemical"},{"id":"M_125","span":{"begin":1478,"end":1487},"obj":"pubtator:MESH:C061951:Chemical"},{"id":"M_126","span":{"begin":1460,"end":1466},"obj":"pubtator:4081:Species"},{"id":"M_127","span":{"begin":515,"end":532},"obj":"pubtator::Chemical"}],"text":"Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21.\nThe rice disease resistance gene, Xa21, encodes a receptor kinase-like protein consisting of leucine-rich repeats in the putative extracellular domain and a serine/threonine kinase in the putative intracellular domain. The putative XA21 kinase domain was expressed as maltose-binding and glutathione S-transferase fusion proteins in Escherichia coli. The fusion proteins are capable of autophosphorylation. Phosphoamino acid analysis of the glutathione S-transferase fusion protein indicates that only serine and threonine residues are phosphorylated. The relative phosphorylation rate of the XA21 kinase against increasing enzyme concentrations follows a first-order rather than second-order kinetics, indicating an intramolecular phosphorylation mechanism. Moreover, the active XA21 kinase cannot phosphorylate a kinase-deficient mutant of XA21 kinase. The enzymatic activity of the XA21 kinase in a buffer containing Mn(2+) is at least 15 times higher than that with Mg(2+). The K(m) and V(max) of XA21 kinase for ATP are 0.3 microm and 8.4 nmol/mg/min, respectively. Tryptic phosphopeptide mapping reveals that multiple sites on the XA21 kinase are phosphorylated. Finally, our data suggest that the region of XA21 kinase corresponding to the RD kinase activation domain is not phosphorylated, revealing a distinct mode of action compared with the tomato Pto serine/threonine kinase conferring disease resistance."}

    21k_plant_trait_mention

    {"project":"21k_plant_trait_mention","denotations":[{"id":"M_0","span":{"begin":112,"end":135},"obj":"xzyao:8892"},{"id":"M_1","span":{"begin":282,"end":288},"obj":"funRiceGene:512"},{"id":"M_2","span":{"begin":345,"end":351},"obj":"funRiceGene:512"},{"id":"M_3","span":{"begin":706,"end":712},"obj":"funRiceGene:512"},{"id":"M_4","span":{"begin":893,"end":899},"obj":"funRiceGene:512"},{"id":"M_5","span":{"begin":998,"end":1004},"obj":"funRiceGene:512"},{"id":"M_6","span":{"begin":1114,"end":1120},"obj":"funRiceGene:512"},{"id":"M_7","span":{"begin":1250,"end":1256},"obj":"funRiceGene:512"},{"id":"M_8","span":{"begin":1327,"end":1333},"obj":"funRiceGene:512"},{"id":"M_9","span":{"begin":1358,"end":1364},"obj":"funRiceGene:512"},{"id":"M_10","span":{"begin":1488,"end":1494},"obj":"funRiceGene:512"},{"id":"M_11","span":{"begin":117,"end":124},"obj":"WTO:0000130, funRiceGene:18"},{"id":"M_12","span":{"begin":1506,"end":1513},"obj":"WTO:0000130, funRiceGene:18"},{"id":"M_13","span":{"begin":117,"end":135},"obj":"TO:0000112, funRiceGene:479, xzyao:11182"},{"id":"M_14","span":{"begin":125,"end":135},"obj":"funRiceGene:228"},{"id":"M_15","span":{"begin":1358,"end":1375},"obj":"xzyao:9447"},{"id":"M_16","span":{"begin":282,"end":288},"obj":"funRiceGene:139"},{"id":"M_17","span":{"begin":345,"end":351},"obj":"funRiceGene:139"},{"id":"M_18","span":{"begin":706,"end":712},"obj":"funRiceGene:139"},{"id":"M_19","span":{"begin":893,"end":899},"obj":"funRiceGene:139"},{"id":"M_20","span":{"begin":998,"end":1004},"obj":"funRiceGene:139"},{"id":"M_21","span":{"begin":1114,"end":1120},"obj":"funRiceGene:139"},{"id":"M_22","span":{"begin":1250,"end":1256},"obj":"funRiceGene:139"},{"id":"M_23","span":{"begin":1327,"end":1333},"obj":"funRiceGene:139"},{"id":"M_24","span":{"begin":1358,"end":1364},"obj":"funRiceGene:139"},{"id":"M_25","span":{"begin":1488,"end":1494},"obj":"funRiceGene:139"},{"id":"M_26","span":{"begin":102,"end":106},"obj":"hunflair:NA:Gene"},{"id":"M_27","span":{"begin":340,"end":344},"obj":"hunflair:NA:Gene"},{"id":"M_28","span":{"begin":701,"end":705},"obj":"hunflair:NA:Gene"},{"id":"M_29","span":{"begin":888,"end":892},"obj":"hunflair:NA:Gene"},{"id":"M_30","span":{"begin":950,"end":954},"obj":"hunflair:NA:Gene"},{"id":"M_31","span":{"begin":993,"end":997},"obj":"hunflair:NA:Gene"},{"id":"M_32","span":{"begin":1109,"end":1113},"obj":"hunflair:NA:Gene"},{"id":"M_33","span":{"begin":1245,"end":1249},"obj":"hunflair:NA:Gene"},{"id":"M_34","span":{"begin":1322,"end":1326},"obj":"hunflair:NA:Gene"},{"id":"M_35","span":{"begin":396,"end":421},"obj":"hunflair:NA:Gene"},{"id":"M_36","span":{"begin":549,"end":574},"obj":"hunflair:NA:Gene"},{"id":"M_37","span":{"begin":376,"end":383},"obj":"hunflair:NA:Chemical"},{"id":"M_38","span":{"begin":142,"end":146},"obj":"hunflair:NA:Gene"},{"id":"M_39","span":{"begin":1460,"end":1466},"obj":"hunflair:NA:Species"},{"id":"M_40","span":{"begin":515,"end":532},"obj":"hunflair:NA:Chemical"},{"id":"M_41","span":{"begin":265,"end":288},"obj":"hunflair:NA:Gene"},{"id":"M_42","span":{"begin":1471,"end":1494},"obj":"hunflair:NA:Gene"},{"id":"M_43","span":{"begin":1125,"end":1128},"obj":"hunflair:NA:Chemical"},{"id":"M_44","span":{"begin":265,"end":271},"obj":"hunflair:NA:Chemical"},{"id":"M_45","span":{"begin":610,"end":616},"obj":"hunflair:NA:Chemical"},{"id":"M_46","span":{"begin":1471,"end":1477},"obj":"hunflair:NA:Chemical"},{"id":"M_47","span":{"begin":1460,"end":1494},"obj":"hunflair:NA:Gene"},{"id":"M_48","span":{"begin":57,"end":106},"obj":"hunflair:NA:Gene"},{"id":"M_49","span":{"begin":396,"end":407},"obj":"hunflair:NA:Chemical"},{"id":"M_50","span":{"begin":549,"end":560},"obj":"hunflair:NA:Chemical"},{"id":"M_51","span":{"begin":272,"end":281},"obj":"hunflair:NA:Chemical"},{"id":"M_52","span":{"begin":621,"end":630},"obj":"hunflair:NA:Chemical"},{"id":"M_53","span":{"begin":1478,"end":1487},"obj":"hunflair:NA:Chemical"},{"id":"M_54","span":{"begin":340,"end":351},"obj":"hunflair:NA:Gene"},{"id":"M_55","span":{"begin":701,"end":712},"obj":"hunflair:NA:Gene"},{"id":"M_56","span":{"begin":888,"end":899},"obj":"hunflair:NA:Gene"},{"id":"M_57","span":{"begin":950,"end":961},"obj":"hunflair:NA:Gene"},{"id":"M_58","span":{"begin":993,"end":1004},"obj":"hunflair:NA:Gene"},{"id":"M_59","span":{"begin":1109,"end":1120},"obj":"hunflair:NA:Gene"},{"id":"M_60","span":{"begin":1245,"end":1256},"obj":"hunflair:NA:Gene"},{"id":"M_61","span":{"begin":1322,"end":1333},"obj":"hunflair:NA:Gene"},{"id":"M_62","span":{"begin":1355,"end":1382},"obj":"hunflair:NA:Gene"},{"id":"M_63","span":{"begin":441,"end":457},"obj":"hunflair:NA:Species"},{"id":"M_64","span":{"begin":57,"end":61},"obj":"hunflair:NA:Species"},{"id":"M_65","span":{"begin":112,"end":116},"obj":"hunflair:NA:Species"},{"id":"M_66","span":{"begin":36,"end":42},"obj":"hunflair:NA:Gene"},{"id":"M_67","span":{"begin":95,"end":101},"obj":"hunflair:NA:Gene"},{"id":"M_68","span":{"begin":167,"end":173},"obj":"hunflair:NA:Gene"},{"id":"M_69","span":{"begin":282,"end":288},"obj":"hunflair:NA:Gene"},{"id":"M_70","span":{"begin":345,"end":351},"obj":"hunflair:NA:Gene"},{"id":"M_71","span":{"begin":706,"end":712},"obj":"hunflair:NA:Gene"},{"id":"M_72","span":{"begin":893,"end":899},"obj":"hunflair:NA:Gene"},{"id":"M_73","span":{"begin":923,"end":929},"obj":"hunflair:NA:Gene"},{"id":"M_74","span":{"begin":955,"end":961},"obj":"hunflair:NA:Gene"},{"id":"M_75","span":{"begin":998,"end":1004},"obj":"hunflair:NA:Gene"},{"id":"M_76","span":{"begin":1114,"end":1120},"obj":"hunflair:NA:Gene"},{"id":"M_77","span":{"begin":1250,"end":1256},"obj":"hunflair:NA:Gene"},{"id":"M_78","span":{"begin":1327,"end":1333},"obj":"hunflair:NA:Gene"},{"id":"M_79","span":{"begin":1358,"end":1364},"obj":"hunflair:NA:Gene"},{"id":"M_80","span":{"begin":1488,"end":1494},"obj":"hunflair:NA:Gene"},{"id":"M_81","span":{"begin":158,"end":186},"obj":"hunflair:NA:Gene"},{"id":"M_82","span":{"begin":1125,"end":1128},"obj":"pubtator:MESH:D000255:Chemical"},{"id":"M_83","span":{"begin":272,"end":281},"obj":"pubtator:MESH:C061951:Chemical"},{"id":"M_84","span":{"begin":621,"end":630},"obj":"pubtator:MESH:C061951:Chemical"},{"id":"M_85","span":{"begin":1478,"end":1487},"obj":"pubtator:MESH:C061951:Chemical"},{"id":"M_86","span":{"begin":408,"end":409},"obj":"pubtator:MESH:D013455:Chemical"},{"id":"M_87","span":{"begin":561,"end":562},"obj":"pubtator:MESH:D013455:Chemical"},{"id":"M_88","span":{"begin":396,"end":407},"obj":"pubtator:MESH:D005978:Chemical"},{"id":"M_89","span":{"begin":549,"end":560},"obj":"pubtator:MESH:D005978:Chemical"},{"id":"M_90","span":{"begin":441,"end":457},"obj":"pubtator:562:Species"},{"id":"M_91","span":{"begin":201,"end":208},"obj":"pubtator:MESH:C038361:Chemical"},{"id":"M_92","span":{"begin":265,"end":271},"obj":"pubtator:MESH:C047902:Chemical"},{"id":"M_93","span":{"begin":610,"end":616},"obj":"pubtator:MESH:C047902:Chemical"},{"id":"M_94","span":{"begin":1471,"end":1477},"obj":"pubtator:MESH:C047902:Chemical"},{"id":"M_95","span":{"begin":1460,"end":1466},"obj":"pubtator:4081:Species"},{"id":"M_96","span":{"begin":57,"end":61},"obj":"pubtator:4530:Species"},{"id":"M_97","span":{"begin":112,"end":116},"obj":"pubtator:4530:Species"},{"id":"M_98","span":{"begin":515,"end":532},"obj":"pubtator::Chemical"},{"id":"M_99","span":{"begin":376,"end":383},"obj":"pubtator:MESH:D008320:Chemical"}],"text":"Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21.\nThe rice disease resistance gene, Xa21, encodes a receptor kinase-like protein consisting of leucine-rich repeats in the putative extracellular domain and a serine/threonine kinase in the putative intracellular domain. The putative XA21 kinase domain was expressed as maltose-binding and glutathione S-transferase fusion proteins in Escherichia coli. The fusion proteins are capable of autophosphorylation. Phosphoamino acid analysis of the glutathione S-transferase fusion protein indicates that only serine and threonine residues are phosphorylated. The relative phosphorylation rate of the XA21 kinase against increasing enzyme concentrations follows a first-order rather than second-order kinetics, indicating an intramolecular phosphorylation mechanism. Moreover, the active XA21 kinase cannot phosphorylate a kinase-deficient mutant of XA21 kinase. The enzymatic activity of the XA21 kinase in a buffer containing Mn(2+) is at least 15 times higher than that with Mg(2+). The K(m) and V(max) of XA21 kinase for ATP are 0.3 microm and 8.4 nmol/mg/min, respectively. Tryptic phosphopeptide mapping reveals that multiple sites on the XA21 kinase are phosphorylated. Finally, our data suggest that the region of XA21 kinase corresponding to the RD kinase activation domain is not phosphorylated, revealing a distinct mode of action compared with the tomato Pto serine/threonine kinase conferring disease resistance."}

    sentences

    {"project":"sentences","denotations":[{"id":"T1","span":{"begin":0,"end":107},"obj":"Sentence"},{"id":"T2","span":{"begin":108,"end":326},"obj":"Sentence"},{"id":"T3","span":{"begin":327,"end":458},"obj":"Sentence"},{"id":"T4","span":{"begin":459,"end":514},"obj":"Sentence"},{"id":"T5","span":{"begin":515,"end":659},"obj":"Sentence"},{"id":"T6","span":{"begin":660,"end":866},"obj":"Sentence"},{"id":"T7","span":{"begin":867,"end":962},"obj":"Sentence"},{"id":"T8","span":{"begin":963,"end":1085},"obj":"Sentence"},{"id":"T9","span":{"begin":1086,"end":1178},"obj":"Sentence"},{"id":"T10","span":{"begin":1179,"end":1276},"obj":"Sentence"},{"id":"T11","span":{"begin":1277,"end":1525},"obj":"Sentence"}],"namespaces":[{"prefix":"_base","uri":"http://pubannotation.org/ontology/tao.owl#"}],"text":"Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21.\nThe rice disease resistance gene, Xa21, encodes a receptor kinase-like protein consisting of leucine-rich repeats in the putative extracellular domain and a serine/threonine kinase in the putative intracellular domain. The putative XA21 kinase domain was expressed as maltose-binding and glutathione S-transferase fusion proteins in Escherichia coli. The fusion proteins are capable of autophosphorylation. Phosphoamino acid analysis of the glutathione S-transferase fusion protein indicates that only serine and threonine residues are phosphorylated. The relative phosphorylation rate of the XA21 kinase against increasing enzyme concentrations follows a first-order rather than second-order kinetics, indicating an intramolecular phosphorylation mechanism. Moreover, the active XA21 kinase cannot phosphorylate a kinase-deficient mutant of XA21 kinase. The enzymatic activity of the XA21 kinase in a buffer containing Mn(2+) is at least 15 times higher than that with Mg(2+). The K(m) and V(max) of XA21 kinase for ATP are 0.3 microm and 8.4 nmol/mg/min, respectively. Tryptic phosphopeptide mapping reveals that multiple sites on the XA21 kinase are phosphorylated. Finally, our data suggest that the region of XA21 kinase corresponding to the RD kinase activation domain is not phosphorylated, revealing a distinct mode of action compared with the tomato Pto serine/threonine kinase conferring disease resistance."}

    Glycan-GlyCosmos

    {"project":"Glycan-GlyCosmos","denotations":[{"id":"T1","span":{"begin":376,"end":383},"obj":"Glycan"}],"attributes":[{"id":"A1","pred":"glycosmos_id","subj":"T1","obj":"https://glycosmos.org/glycans/show/G44653LT"},{"id":"A2","pred":"image","subj":"T1","obj":"https://api.glycosmos.org/wurcs2image/latest/png/binary/G44653LT"}],"text":"Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21.\nThe rice disease resistance gene, Xa21, encodes a receptor kinase-like protein consisting of leucine-rich repeats in the putative extracellular domain and a serine/threonine kinase in the putative intracellular domain. The putative XA21 kinase domain was expressed as maltose-binding and glutathione S-transferase fusion proteins in Escherichia coli. The fusion proteins are capable of autophosphorylation. Phosphoamino acid analysis of the glutathione S-transferase fusion protein indicates that only serine and threonine residues are phosphorylated. The relative phosphorylation rate of the XA21 kinase against increasing enzyme concentrations follows a first-order rather than second-order kinetics, indicating an intramolecular phosphorylation mechanism. Moreover, the active XA21 kinase cannot phosphorylate a kinase-deficient mutant of XA21 kinase. The enzymatic activity of the XA21 kinase in a buffer containing Mn(2+) is at least 15 times higher than that with Mg(2+). The K(m) and V(max) of XA21 kinase for ATP are 0.3 microm and 8.4 nmol/mg/min, respectively. Tryptic phosphopeptide mapping reveals that multiple sites on the XA21 kinase are phosphorylated. Finally, our data suggest that the region of XA21 kinase corresponding to the RD kinase activation domain is not phosphorylated, revealing a distinct mode of action compared with the tomato Pto serine/threonine kinase conferring disease resistance."}

    GlyCosmos15-UBERON

    {"project":"GlyCosmos15-UBERON","denotations":[{"id":"T1","span":{"begin":238,"end":251},"obj":"Body_part"},{"id":"T2","span":{"begin":305,"end":318},"obj":"Body_part"}],"attributes":[{"id":"A1","pred":"uberon_id","subj":"T1","obj":"http://purl.obolibrary.org/obo/GO_0005576"},{"id":"A2","pred":"uberon_id","subj":"T2","obj":"http://purl.obolibrary.org/obo/GO_0005622"}],"text":"Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21.\nThe rice disease resistance gene, Xa21, encodes a receptor kinase-like protein consisting of leucine-rich repeats in the putative extracellular domain and a serine/threonine kinase in the putative intracellular domain. The putative XA21 kinase domain was expressed as maltose-binding and glutathione S-transferase fusion proteins in Escherichia coli. The fusion proteins are capable of autophosphorylation. Phosphoamino acid analysis of the glutathione S-transferase fusion protein indicates that only serine and threonine residues are phosphorylated. The relative phosphorylation rate of the XA21 kinase against increasing enzyme concentrations follows a first-order rather than second-order kinetics, indicating an intramolecular phosphorylation mechanism. Moreover, the active XA21 kinase cannot phosphorylate a kinase-deficient mutant of XA21 kinase. The enzymatic activity of the XA21 kinase in a buffer containing Mn(2+) is at least 15 times higher than that with Mg(2+). The K(m) and V(max) of XA21 kinase for ATP are 0.3 microm and 8.4 nmol/mg/min, respectively. Tryptic phosphopeptide mapping reveals that multiple sites on the XA21 kinase are phosphorylated. Finally, our data suggest that the region of XA21 kinase corresponding to the RD kinase activation domain is not phosphorylated, revealing a distinct mode of action compared with the tomato Pto serine/threonine kinase conferring disease resistance."}

    sentences

    {"project":"sentences","denotations":[{"id":"T1","span":{"begin":0,"end":107},"obj":"Sentence"},{"id":"T2","span":{"begin":108,"end":326},"obj":"Sentence"},{"id":"T3","span":{"begin":327,"end":458},"obj":"Sentence"},{"id":"T4","span":{"begin":459,"end":514},"obj":"Sentence"},{"id":"T5","span":{"begin":515,"end":659},"obj":"Sentence"},{"id":"T6","span":{"begin":660,"end":866},"obj":"Sentence"},{"id":"T7","span":{"begin":867,"end":962},"obj":"Sentence"},{"id":"T8","span":{"begin":963,"end":1085},"obj":"Sentence"},{"id":"T9","span":{"begin":1086,"end":1178},"obj":"Sentence"},{"id":"T10","span":{"begin":1179,"end":1276},"obj":"Sentence"},{"id":"T11","span":{"begin":1277,"end":1525},"obj":"Sentence"}],"namespaces":[{"prefix":"_base","uri":"http://pubannotation.org/ontology/tao.owl#"}],"text":"Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21.\nThe rice disease resistance gene, Xa21, encodes a receptor kinase-like protein consisting of leucine-rich repeats in the putative extracellular domain and a serine/threonine kinase in the putative intracellular domain. The putative XA21 kinase domain was expressed as maltose-binding and glutathione S-transferase fusion proteins in Escherichia coli. The fusion proteins are capable of autophosphorylation. Phosphoamino acid analysis of the glutathione S-transferase fusion protein indicates that only serine and threonine residues are phosphorylated. The relative phosphorylation rate of the XA21 kinase against increasing enzyme concentrations follows a first-order rather than second-order kinetics, indicating an intramolecular phosphorylation mechanism. Moreover, the active XA21 kinase cannot phosphorylate a kinase-deficient mutant of XA21 kinase. The enzymatic activity of the XA21 kinase in a buffer containing Mn(2+) is at least 15 times higher than that with Mg(2+). The K(m) and V(max) of XA21 kinase for ATP are 0.3 microm and 8.4 nmol/mg/min, respectively. Tryptic phosphopeptide mapping reveals that multiple sites on the XA21 kinase are phosphorylated. Finally, our data suggest that the region of XA21 kinase corresponding to the RD kinase activation domain is not phosphorylated, revealing a distinct mode of action compared with the tomato Pto serine/threonine kinase conferring disease resistance."}

    GlyCosmos15-Sentences

    {"project":"GlyCosmos15-Sentences","blocks":[{"id":"T1","span":{"begin":0,"end":107},"obj":"Sentence"},{"id":"T2","span":{"begin":108,"end":326},"obj":"Sentence"},{"id":"T3","span":{"begin":327,"end":458},"obj":"Sentence"},{"id":"T4","span":{"begin":459,"end":514},"obj":"Sentence"},{"id":"T5","span":{"begin":515,"end":659},"obj":"Sentence"},{"id":"T6","span":{"begin":660,"end":866},"obj":"Sentence"},{"id":"T7","span":{"begin":867,"end":962},"obj":"Sentence"},{"id":"T8","span":{"begin":963,"end":1085},"obj":"Sentence"},{"id":"T9","span":{"begin":1086,"end":1178},"obj":"Sentence"},{"id":"T10","span":{"begin":1179,"end":1276},"obj":"Sentence"},{"id":"T11","span":{"begin":1277,"end":1525},"obj":"Sentence"}],"text":"Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21.\nThe rice disease resistance gene, Xa21, encodes a receptor kinase-like protein consisting of leucine-rich repeats in the putative extracellular domain and a serine/threonine kinase in the putative intracellular domain. The putative XA21 kinase domain was expressed as maltose-binding and glutathione S-transferase fusion proteins in Escherichia coli. The fusion proteins are capable of autophosphorylation. Phosphoamino acid analysis of the glutathione S-transferase fusion protein indicates that only serine and threonine residues are phosphorylated. The relative phosphorylation rate of the XA21 kinase against increasing enzyme concentrations follows a first-order rather than second-order kinetics, indicating an intramolecular phosphorylation mechanism. Moreover, the active XA21 kinase cannot phosphorylate a kinase-deficient mutant of XA21 kinase. The enzymatic activity of the XA21 kinase in a buffer containing Mn(2+) is at least 15 times higher than that with Mg(2+). The K(m) and V(max) of XA21 kinase for ATP are 0.3 microm and 8.4 nmol/mg/min, respectively. Tryptic phosphopeptide mapping reveals that multiple sites on the XA21 kinase are phosphorylated. Finally, our data suggest that the region of XA21 kinase corresponding to the RD kinase activation domain is not phosphorylated, revealing a distinct mode of action compared with the tomato Pto serine/threonine kinase conferring disease resistance."}

    GlyCosmos15-NCBITAXON

    {"project":"GlyCosmos15-NCBITAXON","denotations":[{"id":"T1","span":{"begin":57,"end":61},"obj":"OrganismTaxon"},{"id":"T2","span":{"begin":112,"end":116},"obj":"OrganismTaxon"},{"id":"T3","span":{"begin":441,"end":457},"obj":"OrganismTaxon"}],"attributes":[{"id":"A1","pred":"db_id","subj":"T1","obj":"4530"},{"id":"A2","pred":"db_id","subj":"T2","obj":"4530"},{"id":"A3","pred":"db_id","subj":"T3","obj":"562"}],"namespaces":[{"prefix":"_base","uri":"https://glycosmos.org/organisms/"}],"text":"Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21.\nThe rice disease resistance gene, Xa21, encodes a receptor kinase-like protein consisting of leucine-rich repeats in the putative extracellular domain and a serine/threonine kinase in the putative intracellular domain. The putative XA21 kinase domain was expressed as maltose-binding and glutathione S-transferase fusion proteins in Escherichia coli. The fusion proteins are capable of autophosphorylation. Phosphoamino acid analysis of the glutathione S-transferase fusion protein indicates that only serine and threonine residues are phosphorylated. The relative phosphorylation rate of the XA21 kinase against increasing enzyme concentrations follows a first-order rather than second-order kinetics, indicating an intramolecular phosphorylation mechanism. Moreover, the active XA21 kinase cannot phosphorylate a kinase-deficient mutant of XA21 kinase. The enzymatic activity of the XA21 kinase in a buffer containing Mn(2+) is at least 15 times higher than that with Mg(2+). The K(m) and V(max) of XA21 kinase for ATP are 0.3 microm and 8.4 nmol/mg/min, respectively. Tryptic phosphopeptide mapping reveals that multiple sites on the XA21 kinase are phosphorylated. Finally, our data suggest that the region of XA21 kinase corresponding to the RD kinase activation domain is not phosphorylated, revealing a distinct mode of action compared with the tomato Pto serine/threonine kinase conferring disease resistance."}

    GlyCosmos15-Glycan

    {"project":"GlyCosmos15-Glycan","denotations":[{"id":"T1","span":{"begin":376,"end":383},"obj":"Glycan"}],"attributes":[{"id":"A1","pred":"glycosmos_id","subj":"T1","obj":"https://glycosmos.org/glycans/show/G44653LT"},{"id":"A2","pred":"image","subj":"T1","obj":"https://api.glycosmos.org/wurcs2image/latest/png/binary/G44653LT"}],"text":"Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21.\nThe rice disease resistance gene, Xa21, encodes a receptor kinase-like protein consisting of leucine-rich repeats in the putative extracellular domain and a serine/threonine kinase in the putative intracellular domain. The putative XA21 kinase domain was expressed as maltose-binding and glutathione S-transferase fusion proteins in Escherichia coli. The fusion proteins are capable of autophosphorylation. Phosphoamino acid analysis of the glutathione S-transferase fusion protein indicates that only serine and threonine residues are phosphorylated. The relative phosphorylation rate of the XA21 kinase against increasing enzyme concentrations follows a first-order rather than second-order kinetics, indicating an intramolecular phosphorylation mechanism. Moreover, the active XA21 kinase cannot phosphorylate a kinase-deficient mutant of XA21 kinase. The enzymatic activity of the XA21 kinase in a buffer containing Mn(2+) is at least 15 times higher than that with Mg(2+). The K(m) and V(max) of XA21 kinase for ATP are 0.3 microm and 8.4 nmol/mg/min, respectively. Tryptic phosphopeptide mapping reveals that multiple sites on the XA21 kinase are phosphorylated. Finally, our data suggest that the region of XA21 kinase corresponding to the RD kinase activation domain is not phosphorylated, revealing a distinct mode of action compared with the tomato Pto serine/threonine kinase conferring disease resistance."}

    NCBITAXON

    {"project":"NCBITAXON","denotations":[{"id":"T1","span":{"begin":57,"end":61},"obj":"OrganismTaxon"},{"id":"T2","span":{"begin":112,"end":116},"obj":"OrganismTaxon"},{"id":"T3","span":{"begin":441,"end":457},"obj":"OrganismTaxon"}],"attributes":[{"id":"A1","pred":"db_id","subj":"T1","obj":"4530"},{"id":"A2","pred":"db_id","subj":"T2","obj":"4530"},{"id":"A3","pred":"db_id","subj":"T3","obj":"562"}],"text":"Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21.\nThe rice disease resistance gene, Xa21, encodes a receptor kinase-like protein consisting of leucine-rich repeats in the putative extracellular domain and a serine/threonine kinase in the putative intracellular domain. The putative XA21 kinase domain was expressed as maltose-binding and glutathione S-transferase fusion proteins in Escherichia coli. The fusion proteins are capable of autophosphorylation. Phosphoamino acid analysis of the glutathione S-transferase fusion protein indicates that only serine and threonine residues are phosphorylated. The relative phosphorylation rate of the XA21 kinase against increasing enzyme concentrations follows a first-order rather than second-order kinetics, indicating an intramolecular phosphorylation mechanism. Moreover, the active XA21 kinase cannot phosphorylate a kinase-deficient mutant of XA21 kinase. The enzymatic activity of the XA21 kinase in a buffer containing Mn(2+) is at least 15 times higher than that with Mg(2+). The K(m) and V(max) of XA21 kinase for ATP are 0.3 microm and 8.4 nmol/mg/min, respectively. Tryptic phosphopeptide mapping reveals that multiple sites on the XA21 kinase are phosphorylated. Finally, our data suggest that the region of XA21 kinase corresponding to the RD kinase activation domain is not phosphorylated, revealing a distinct mode of action compared with the tomato Pto serine/threonine kinase conferring disease resistance."}

    Anatomy-UBERON

    {"project":"Anatomy-UBERON","denotations":[{"id":"T1","span":{"begin":238,"end":251},"obj":"Body_part"},{"id":"T2","span":{"begin":305,"end":318},"obj":"Body_part"}],"attributes":[{"id":"A1","pred":"uberon_id","subj":"T1","obj":"http://purl.obolibrary.org/obo/GO_0005576"},{"id":"A2","pred":"uberon_id","subj":"T2","obj":"http://purl.obolibrary.org/obo/GO_0005622"}],"text":"Biochemical characterization of the kinase domain of the rice disease resistance receptor-like kinase XA21.\nThe rice disease resistance gene, Xa21, encodes a receptor kinase-like protein consisting of leucine-rich repeats in the putative extracellular domain and a serine/threonine kinase in the putative intracellular domain. The putative XA21 kinase domain was expressed as maltose-binding and glutathione S-transferase fusion proteins in Escherichia coli. The fusion proteins are capable of autophosphorylation. Phosphoamino acid analysis of the glutathione S-transferase fusion protein indicates that only serine and threonine residues are phosphorylated. The relative phosphorylation rate of the XA21 kinase against increasing enzyme concentrations follows a first-order rather than second-order kinetics, indicating an intramolecular phosphorylation mechanism. Moreover, the active XA21 kinase cannot phosphorylate a kinase-deficient mutant of XA21 kinase. The enzymatic activity of the XA21 kinase in a buffer containing Mn(2+) is at least 15 times higher than that with Mg(2+). The K(m) and V(max) of XA21 kinase for ATP are 0.3 microm and 8.4 nmol/mg/min, respectively. Tryptic phosphopeptide mapping reveals that multiple sites on the XA21 kinase are phosphorylated. Finally, our data suggest that the region of XA21 kinase corresponding to the RD kinase activation domain is not phosphorylated, revealing a distinct mode of action compared with the tomato Pto serine/threonine kinase conferring disease resistance."}