PubMed:10945470 / 92-97
MEPE, a new gene expressed in bone marrow and tumors causing osteomalacia.
Oncogenic hypophosphatemic osteomalacia (OHO) is characterized by a renal phosphate leak, hypophosphatemia, low-serum calcitriol (1,25-vitamin-D3), and abnormalities in skeletal mineralization. Resection of OHO tumors results in remission of the symptoms, and there is evidence that a circulating phosphaturic factor plays a role in the bone disease. This paper describes the characterization and cloning of a gene that is a candidate for the tumor-secreted phosphaturic factor. This new gene has been named MEPE (matrix extracellular phosphoglycoprotein) and has major similarities to a group of bone-tooth mineral matrix phospho-glycoproteins (osteopontin (OPN; HGMW-approved symbol SPP1), dentin sialo phosphoprotein (DSPP), dentin matrix protein 1 (DMP1), bone sialoprotein II (IBSP), and bone morphogenetic proteins (BMP). All the proteins including MEPE contain RGD sequence motifs that are proposed to be essential for integrin-receptor interactions. Of further interest is the finding that MEPE, OPN, DSPP, DMP1, IBSP, and BMP3 all map to a defined region in chromosome 4q. Refined mapping localizes MEPE to 4q21.1 between ESTs D4S2785 (WI-6336) and D4S2844 (WI-3770). MEPE is 525 residues in length with a short N-terminal signal peptide. High-level expression of MEPE mRNA occurred in all four OHO tumors screened. Three of 11 non-OHO tumors screened contained trace levels of MEPE expression (detected only after RT-PCR and Southern 32P analysis). Normal tissue expression was found in bone marrow and brain with very-low-level expression found in lung, kidney, and human placenta. Evidence is also presented for the tumor secretion of clusterin (HGMW-approved symbol CLU) and its possible role as a cytotoxic factor in one of the OHO patients described.
|