> top > docs > PubMed:10672186 > spans > 1022-1026

PubMed:10672186 / 1022-1026 JSONTXT

BasT, a membrane-bound transducer protein for amino acid detection in Halobacterium salinarum. Halophilic archaea, such as eubacteria, use methyl-accepting chemotaxis proteins (MCPs) to sense their environment. We show here that BasT is a halobacterial transducer protein (Htp) responsible for chemotaxis towards five attractant amino acids. The C-terminus of the protein exhibits the highly conserved regions that are diagnostic for MCPs: the signalling domain for communication with the histidine kinase and the methylation sites that interact with the methylation/demethylation enzymes for adaptation. Hydropathy analysis predicts an enterobacterial-type transducer protein topology for BasT, with an extracellular putative ligand-binding domain flanked by two transmembrane helices and a cytoplasmic domain. BasT-inactivated mutant cells are missing a membrane protein radiolabelled with L-[methyl-3H]-methionine in wild-type cells, confirming that BasT is methylatable and membrane bound. Behavioural analysis of the basT mutant cells by capillary and chemical-in-plug assays demonstrates complete loss of chemotactic responses towards five (leucine, isoleucine, valine, methionine and cysteine) of the six attractant amino acids for Halobacterium salinarum, whereas they still respond to arginine. The volatile methyl group production assays also corroborate these findings and confirm that BasT signalling induces methyl group turnover. Our data identify BasT as the chemotaxis transducer protein for the branched chain amino acids leucine, isoleucine and valine as well as for methionine and cysteine. Thus, BasT and the arginine sensor Car cover the entire spectrum of chemotactic responses towards attractant amino acids in H. salinarum.

projects that have annotations to this span

Unselected / annnotation Selected / annnotation