PubMed:10612003 / 97-103
Ganglioside expression in tissues of mice lacking the tumor necrosis factor receptor 1.
This study presents a comparative analysis of gangliosides from lymphoid (spleen and thymus) and other tissues (brain, liver, lung, muscle) of C57BL/6 mice homozygous (-/-) and heterozygous (+/-) for the tumor necrosis factor receptor 1 (TNFRp55). Quantitative and qualitative differences in the expression of the lipid-bound N-acetylneuraminic (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc) and of various ganglioside biosynthesis pathways were detected between the tissues of the TNFRp55 -/- and the control TNFRp55 +/- mice. Sialic acid profiles showed a strong decrease in the absolute amount of sialic acids (Neu5Ac + Neu5Gc) in the lungs and thymus of homozygous (1.41 and 0.3 ng/mg wet weight, respectively) compared with control heterozygous animals (7.18 and 2.05 ng/mg wet weight, respectively). Considerable differences of Neu5Ac/Neu5Gc ratios in the lungs, muscle, spleen, and thymus were also detected. The gangliosides GM3(Neu5Ac) and GM3(Neu5Gc) were the dominant gangliosides in the lungs of the control animals, whereas the knockout mice almost completely lacked these structures in this organ. Reduced expression of GM1b-type gangliosides (GM1b and GalNAc-GM1b) was also found in the lungs, spleen, and thymus of the TNFRp55 knockout mice. On the other hand, neolacto-series gangliosides were more abundant in the lungs, brain, and muscle of the knockout mice, whereas their expression in the liver, spleen, and thymus was similar in both groups of animals. This study provides in vivo evidence that TNF signaling via the TNFRp55 is involved in the acquisition of a distinct ganglioside assembly in different mouse organs. TNFRp55 signaling seems to be especially important for the activation of the GM1b-type ganglioside biosynthetic pathway that is a unique characteristic of the mouse lymphoid tissues.
|