PubMed:10460145 JSONTXT

Annnotations TAB JSON ListView MergeView

    bionlp-st-epi-2011-training

    {"project":"bionlp-st-epi-2011-training","denotations":[{"id":"T1","span":{"begin":45,"end":65},"obj":"Protein"},{"id":"T2","span":{"begin":190,"end":210},"obj":"Protein"},{"id":"T3","span":{"begin":610,"end":630},"obj":"Protein"},{"id":"T4","span":{"begin":780,"end":800},"obj":"Protein"},{"id":"T5","span":{"begin":1018,"end":1038},"obj":"Protein"}],"text":"Phenylalanine residues in the active site of tyrosine hydroxylase: mutagenesis of Phe300 and Phe309 to alanine and metal ion-catalyzed hydroxylation of Phe300.\nResidues Phe300 and Phe309 of tyrosine hydroxylase are located in the active site in the recently described three-dimensional structure of the enzyme, where they have been proposed to play roles in substrate binding. Also based on the structure, Phe300 has been reported to be hydroxylated due to a naturally occurring posttranslational modification [Goodwill, K. E., Sabatier, C., and Stevens, R. C. (1998) Biochemistry 37, 13437-13445]. Mutants of tyrosine hydroxylase with alanine substituted for Phe300 or Phe309 have now been purified and characterized. The F309A protein possesses 40% less activity than wild-type tyrosine hydroxylase in the production of DOPA, but full activity in the production of dihydropterin. The F300A protein shows a 2.5-fold decrease in activity in the production of both DOPA and dihydropterin. The K(6-MPH4) value for F300A tyrosine hydroxylase is twice the wild-type value. These results are consistent with Phe309 having a role in maintaining the integrity of the active site, while Phe300 contributes less than 1 kcal/mol to binding tetrahydropterin. Characterization of Phe300 by MALDI-TOF mass spectrometry and amino acid sequencing showed that hydroxylation only occurs in the isolated catalytic domain after incubation with a large excess of 7, 8-dihydropterin, DTT, and Fe(2+). The modification is not observed in the untreated catalytic domain or in the full-length protein, even in the presence of excess iron. These results establish that hydroxylation of Phe300 is an artifact of the crystallography conditions and is not relevant to catalysis."}