PubMed:10428866
Annnotations
GlyCosmos6-Glycan-Motif-Image
{"project":"GlyCosmos6-Glycan-Motif-Image","denotations":[{"id":"T1","span":{"begin":471,"end":478},"obj":"Glycan_Motif"},{"id":"T2","span":{"begin":566,"end":573},"obj":"Glycan_Motif"},{"id":"T3","span":{"begin":1422,"end":1429},"obj":"Glycan_Motif"},{"id":"T4","span":{"begin":1769,"end":1776},"obj":"Glycan_Motif"},{"id":"T5","span":{"begin":1916,"end":1923},"obj":"Glycan_Motif"}],"attributes":[{"id":"A1","pred":"image","subj":"T1","obj":"https://api.glycosmos.org/wurcs2image/0.10.0/png/binary/G15021LG"},{"id":"A2","pred":"image","subj":"T2","obj":"https://api.glycosmos.org/wurcs2image/0.10.0/png/binary/G15021LG"},{"id":"A3","pred":"image","subj":"T3","obj":"https://api.glycosmos.org/wurcs2image/0.10.0/png/binary/G15021LG"},{"id":"A4","pred":"image","subj":"T4","obj":"https://api.glycosmos.org/wurcs2image/0.10.0/png/binary/G15021LG"},{"id":"A5","pred":"image","subj":"T5","obj":"https://api.glycosmos.org/wurcs2image/0.10.0/png/binary/G15021LG"}],"text":"Effect of alternative glycosylation on insulin receptor processing.\nThe mature insulin receptor is a cell surface heterotetrameric glycoprotein composed of two alpha- and two beta-subunits. In 3T3-L1 adipocytes as in other cell types, the receptor is synthesized as a single polypeptide consisting of uncleaved alpha- and beta-subunits, migrating as a 190-kDa glycoprotein. To examine the importance of N-linked glycosylation on insulin receptor processing, we have used glucose deprivation as a tool to alter protein glycosylation. Western blot analysis shows that glucose deprivation led to a time-dependent accumulation of an alternative proreceptor of 170 kDa in a subcellular fraction consistent with endoplasmic reticulum localization. Co-precipitation assays provide evidence that the alternative proreceptor bound GRP78, an endoplasmic reticulum molecular chaperone. N-Glycosidase F treatment shows that the alternative proreceptor contained N-linked oligosaccharides. Yet, endoglycosidase H insensitivity indicates an aberrant oligosaccharide structure. Using pulse-chase methodology, we show that the synthetic rate was similar between the normal and alternative proreceptor. However, the normal proreceptor was processed into alpha- and beta-subunits (t((1)/(2)) = 1.3 +/- 0.6 h), while the alternative proreceptor was degraded (t((1)/(2)) = 5.1 +/- 0.6 h). Upon refeeding cells that were initially deprived of glucose, the alternative proreceptor was processed to a higher molecular weight form and gained sensitivity to endoglycosidase H. This \"intermediate\" form of the proreceptor was also degraded, although a small fraction escaped degradation, resulting in cleavage to the alpha- and beta-subunits. These data provide evidence for the first time that glucose deprivation leads to the accumulation of an alternative proreceptor, which can be post-translationally glycosylated with the readdition of glucose inducing both accelerated degradation and maturation."}
sentences
{"project":"sentences","denotations":[{"id":"T1","span":{"begin":0,"end":67},"obj":"Sentence"},{"id":"T2","span":{"begin":68,"end":189},"obj":"Sentence"},{"id":"T3","span":{"begin":190,"end":373},"obj":"Sentence"},{"id":"T4","span":{"begin":374,"end":532},"obj":"Sentence"},{"id":"T5","span":{"begin":533,"end":741},"obj":"Sentence"},{"id":"T6","span":{"begin":742,"end":874},"obj":"Sentence"},{"id":"T7","span":{"begin":875,"end":976},"obj":"Sentence"},{"id":"T8","span":{"begin":977,"end":1062},"obj":"Sentence"},{"id":"T9","span":{"begin":1063,"end":1185},"obj":"Sentence"},{"id":"T10","span":{"begin":1186,"end":1368},"obj":"Sentence"},{"id":"T11","span":{"begin":1369,"end":1551},"obj":"Sentence"},{"id":"T12","span":{"begin":1552,"end":1716},"obj":"Sentence"},{"id":"T13","span":{"begin":1717,"end":1977},"obj":"Sentence"}],"namespaces":[{"prefix":"_base","uri":"http://pubannotation.org/ontology/tao.owl#"}],"text":"Effect of alternative glycosylation on insulin receptor processing.\nThe mature insulin receptor is a cell surface heterotetrameric glycoprotein composed of two alpha- and two beta-subunits. In 3T3-L1 adipocytes as in other cell types, the receptor is synthesized as a single polypeptide consisting of uncleaved alpha- and beta-subunits, migrating as a 190-kDa glycoprotein. To examine the importance of N-linked glycosylation on insulin receptor processing, we have used glucose deprivation as a tool to alter protein glycosylation. Western blot analysis shows that glucose deprivation led to a time-dependent accumulation of an alternative proreceptor of 170 kDa in a subcellular fraction consistent with endoplasmic reticulum localization. Co-precipitation assays provide evidence that the alternative proreceptor bound GRP78, an endoplasmic reticulum molecular chaperone. N-Glycosidase F treatment shows that the alternative proreceptor contained N-linked oligosaccharides. Yet, endoglycosidase H insensitivity indicates an aberrant oligosaccharide structure. Using pulse-chase methodology, we show that the synthetic rate was similar between the normal and alternative proreceptor. However, the normal proreceptor was processed into alpha- and beta-subunits (t((1)/(2)) = 1.3 +/- 0.6 h), while the alternative proreceptor was degraded (t((1)/(2)) = 5.1 +/- 0.6 h). Upon refeeding cells that were initially deprived of glucose, the alternative proreceptor was processed to a higher molecular weight form and gained sensitivity to endoglycosidase H. This \"intermediate\" form of the proreceptor was also degraded, although a small fraction escaped degradation, resulting in cleavage to the alpha- and beta-subunits. These data provide evidence for the first time that glucose deprivation leads to the accumulation of an alternative proreceptor, which can be post-translationally glycosylated with the readdition of glucose inducing both accelerated degradation and maturation."}
GlyCosmos6-Glycan-Motif-Structure
{"project":"GlyCosmos6-Glycan-Motif-Structure","denotations":[{"id":"T1","span":{"begin":471,"end":478},"obj":"https://glytoucan.org/Structures/Glycans/G15021LG"},{"id":"T2","span":{"begin":566,"end":573},"obj":"https://glytoucan.org/Structures/Glycans/G15021LG"},{"id":"T3","span":{"begin":1422,"end":1429},"obj":"https://glytoucan.org/Structures/Glycans/G15021LG"},{"id":"T4","span":{"begin":1769,"end":1776},"obj":"https://glytoucan.org/Structures/Glycans/G15021LG"},{"id":"T5","span":{"begin":1916,"end":1923},"obj":"https://glytoucan.org/Structures/Glycans/G15021LG"}],"text":"Effect of alternative glycosylation on insulin receptor processing.\nThe mature insulin receptor is a cell surface heterotetrameric glycoprotein composed of two alpha- and two beta-subunits. In 3T3-L1 adipocytes as in other cell types, the receptor is synthesized as a single polypeptide consisting of uncleaved alpha- and beta-subunits, migrating as a 190-kDa glycoprotein. To examine the importance of N-linked glycosylation on insulin receptor processing, we have used glucose deprivation as a tool to alter protein glycosylation. Western blot analysis shows that glucose deprivation led to a time-dependent accumulation of an alternative proreceptor of 170 kDa in a subcellular fraction consistent with endoplasmic reticulum localization. Co-precipitation assays provide evidence that the alternative proreceptor bound GRP78, an endoplasmic reticulum molecular chaperone. N-Glycosidase F treatment shows that the alternative proreceptor contained N-linked oligosaccharides. Yet, endoglycosidase H insensitivity indicates an aberrant oligosaccharide structure. Using pulse-chase methodology, we show that the synthetic rate was similar between the normal and alternative proreceptor. However, the normal proreceptor was processed into alpha- and beta-subunits (t((1)/(2)) = 1.3 +/- 0.6 h), while the alternative proreceptor was degraded (t((1)/(2)) = 5.1 +/- 0.6 h). Upon refeeding cells that were initially deprived of glucose, the alternative proreceptor was processed to a higher molecular weight form and gained sensitivity to endoglycosidase H. This \"intermediate\" form of the proreceptor was also degraded, although a small fraction escaped degradation, resulting in cleavage to the alpha- and beta-subunits. These data provide evidence for the first time that glucose deprivation leads to the accumulation of an alternative proreceptor, which can be post-translationally glycosylated with the readdition of glucose inducing both accelerated degradation and maturation."}
bionlp-st-epi-2011-training
{"project":"bionlp-st-epi-2011-training","denotations":[{"id":"T1","span":{"begin":39,"end":55},"obj":"Protein"},{"id":"T2","span":{"begin":79,"end":95},"obj":"Protein"},{"id":"T3","span":{"begin":429,"end":445},"obj":"Protein"},{"id":"T4","span":{"begin":822,"end":827},"obj":"Protein"},{"id":"T5","span":{"begin":875,"end":890},"obj":"Protein"},{"id":"T6","span":{"begin":982,"end":999},"obj":"Protein"},{"id":"T7","span":{"begin":1533,"end":1550},"obj":"Protein"}],"text":"Effect of alternative glycosylation on insulin receptor processing.\nThe mature insulin receptor is a cell surface heterotetrameric glycoprotein composed of two alpha- and two beta-subunits. In 3T3-L1 adipocytes as in other cell types, the receptor is synthesized as a single polypeptide consisting of uncleaved alpha- and beta-subunits, migrating as a 190-kDa glycoprotein. To examine the importance of N-linked glycosylation on insulin receptor processing, we have used glucose deprivation as a tool to alter protein glycosylation. Western blot analysis shows that glucose deprivation led to a time-dependent accumulation of an alternative proreceptor of 170 kDa in a subcellular fraction consistent with endoplasmic reticulum localization. Co-precipitation assays provide evidence that the alternative proreceptor bound GRP78, an endoplasmic reticulum molecular chaperone. N-Glycosidase F treatment shows that the alternative proreceptor contained N-linked oligosaccharides. Yet, endoglycosidase H insensitivity indicates an aberrant oligosaccharide structure. Using pulse-chase methodology, we show that the synthetic rate was similar between the normal and alternative proreceptor. However, the normal proreceptor was processed into alpha- and beta-subunits (t((1)/(2)) = 1.3 +/- 0.6 h), while the alternative proreceptor was degraded (t((1)/(2)) = 5.1 +/- 0.6 h). Upon refeeding cells that were initially deprived of glucose, the alternative proreceptor was processed to a higher molecular weight form and gained sensitivity to endoglycosidase H. This \"intermediate\" form of the proreceptor was also degraded, although a small fraction escaped degradation, resulting in cleavage to the alpha- and beta-subunits. These data provide evidence for the first time that glucose deprivation leads to the accumulation of an alternative proreceptor, which can be post-translationally glycosylated with the readdition of glucose inducing both accelerated degradation and maturation."}
Anatomy-UBERON
{"project":"Anatomy-UBERON","denotations":[{"id":"T1","span":{"begin":200,"end":210},"obj":"Body_part"},{"id":"T2","span":{"begin":718,"end":727},"obj":"Body_part"},{"id":"T3","span":{"begin":844,"end":853},"obj":"Body_part"}],"attributes":[{"id":"A1","pred":"uberon_id","subj":"T1","obj":"http://purl.obolibrary.org/obo/CL_0000136"},{"id":"A2","pred":"uberon_id","subj":"T2","obj":"http://purl.obolibrary.org/obo/UBERON_0007361"},{"id":"A3","pred":"uberon_id","subj":"T3","obj":"http://purl.obolibrary.org/obo/UBERON_0007361"}],"text":"Effect of alternative glycosylation on insulin receptor processing.\nThe mature insulin receptor is a cell surface heterotetrameric glycoprotein composed of two alpha- and two beta-subunits. In 3T3-L1 adipocytes as in other cell types, the receptor is synthesized as a single polypeptide consisting of uncleaved alpha- and beta-subunits, migrating as a 190-kDa glycoprotein. To examine the importance of N-linked glycosylation on insulin receptor processing, we have used glucose deprivation as a tool to alter protein glycosylation. Western blot analysis shows that glucose deprivation led to a time-dependent accumulation of an alternative proreceptor of 170 kDa in a subcellular fraction consistent with endoplasmic reticulum localization. Co-precipitation assays provide evidence that the alternative proreceptor bound GRP78, an endoplasmic reticulum molecular chaperone. N-Glycosidase F treatment shows that the alternative proreceptor contained N-linked oligosaccharides. Yet, endoglycosidase H insensitivity indicates an aberrant oligosaccharide structure. Using pulse-chase methodology, we show that the synthetic rate was similar between the normal and alternative proreceptor. However, the normal proreceptor was processed into alpha- and beta-subunits (t((1)/(2)) = 1.3 +/- 0.6 h), while the alternative proreceptor was degraded (t((1)/(2)) = 5.1 +/- 0.6 h). Upon refeeding cells that were initially deprived of glucose, the alternative proreceptor was processed to a higher molecular weight form and gained sensitivity to endoglycosidase H. This \"intermediate\" form of the proreceptor was also degraded, although a small fraction escaped degradation, resulting in cleavage to the alpha- and beta-subunits. These data provide evidence for the first time that glucose deprivation leads to the accumulation of an alternative proreceptor, which can be post-translationally glycosylated with the readdition of glucose inducing both accelerated degradation and maturation."}
CL-cell
{"project":"CL-cell","denotations":[{"id":"T1","span":{"begin":200,"end":210},"obj":"Cell"}],"attributes":[{"id":"A1","pred":"cl_id","subj":"T1","obj":"http://purl.obolibrary.org/obo/CL:0000136"}],"text":"Effect of alternative glycosylation on insulin receptor processing.\nThe mature insulin receptor is a cell surface heterotetrameric glycoprotein composed of two alpha- and two beta-subunits. In 3T3-L1 adipocytes as in other cell types, the receptor is synthesized as a single polypeptide consisting of uncleaved alpha- and beta-subunits, migrating as a 190-kDa glycoprotein. To examine the importance of N-linked glycosylation on insulin receptor processing, we have used glucose deprivation as a tool to alter protein glycosylation. Western blot analysis shows that glucose deprivation led to a time-dependent accumulation of an alternative proreceptor of 170 kDa in a subcellular fraction consistent with endoplasmic reticulum localization. Co-precipitation assays provide evidence that the alternative proreceptor bound GRP78, an endoplasmic reticulum molecular chaperone. N-Glycosidase F treatment shows that the alternative proreceptor contained N-linked oligosaccharides. Yet, endoglycosidase H insensitivity indicates an aberrant oligosaccharide structure. Using pulse-chase methodology, we show that the synthetic rate was similar between the normal and alternative proreceptor. However, the normal proreceptor was processed into alpha- and beta-subunits (t((1)/(2)) = 1.3 +/- 0.6 h), while the alternative proreceptor was degraded (t((1)/(2)) = 5.1 +/- 0.6 h). Upon refeeding cells that were initially deprived of glucose, the alternative proreceptor was processed to a higher molecular weight form and gained sensitivity to endoglycosidase H. This \"intermediate\" form of the proreceptor was also degraded, although a small fraction escaped degradation, resulting in cleavage to the alpha- and beta-subunits. These data provide evidence for the first time that glucose deprivation leads to the accumulation of an alternative proreceptor, which can be post-translationally glycosylated with the readdition of glucose inducing both accelerated degradation and maturation."}