PubMed:10393983 / 9-13
High gene density is conserved at syntenic loci of small and large grass genomes.
Comparative genomic analysis at the genetic-map level has shown extensive conservation of the gene order between the different grass genomes in many chromosomal regions. However, little is known about the gene organization in grass genomes at the microlevel. Comparison of gene-coding regions between maize, rice, and sorghum showed that the distance between the genes is correlated with the genome size. We have investigated the microcolinearity at Lrk gene loci in the genomes of four grass species: wheat, barley, maize, and rice. The Lrk genes, which encode receptor-like kinases, were found to be consistently associated with another type of receptor-like kinase (Tak) on chromosome groups 1 and 3 in Triticeae and on chromosomes homoeologous to Triticeae group 3 in the other grass genomes. On Triticeae chromosome group 1, Tak and Lrk together with genes putatively encoding NBS/LRR proteins form a cluster of genes possibly involved in signal transduction. Comparison of the gene composition at orthologous Lrk loci in wheat, barley, and rice revealed a maximal gene density of one gene per 4-5 kb, very similar to the gene density in Arabidopsis thaliana. We conclude that small and large grass genomes contain regions that are highly enriched in genes with very little or no repetitive DNA. The comparison of the gene organization suggested various genome rearrangements during the evolution of the different grass species.
|