> top > docs > PubMed:10026134 > spans > 821-829

PubMed:10026134 / 821-829 JSONTXT

Cadmium-mediated activation of the metal response element in human neuroblastoma cells lacking functional metal response element-binding transcription factor-1. Metal response element-binding transcription factor-1 (MTF-1) binds specifically to metal response elements (MREs) and transactivates metallothionein (MT) gene expression in response to zinc and cadmium. This investigation contrasts the mechanism of mouse MT gene (mMT-I) promoter activation by cadmium and zinc in IMR-32 human neuroblastoma cells to determine whether MTF-1 binding to the MRE is necessary for activation by these metals. Cadmium activated a mMT-1 promoter (-150 base pairs) luciferase reporter 20-25-fold through a MRE-dependent mechanism. In contrast, zinc had little effect on the mMT-1 luciferase reporter. IMR-32 cells lacked MRE binding activity, and treatment with zinc in vitro or in vivo did not generate a MTF-1. MRE complex, suggesting that IMR-32 cells lack functional MTF-1. Overexpression of mMTF-1 regenerated a zinc-mediated induction of the MRE without affecting cadmium activation. Because no other transition metals tested activated the MRE, this effect appeared to be cadmium-specific. These data demonstrate that in IMR-32 human neuroblastoma cells, zinc and cadmium can use independent mechanisms for activation of the mMT-I promoter and cadmium-mediated MRE activation is independent of MTF-1 and zinc.

projects that have annotations to this span

There is no project