PMC:7723248 / 35945-37420 JSONTXT

Annnotations TAB JSON ListView MergeView

{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/7723248","sourcedb":"PMC","sourceid":"7723248","source_url":"https://www.ncbi.nlm.nih.gov/pmc/7723248","text":"Besides ambient RH, droplet composition can affect evaporation rates as well. At certain RH conditions, the evaporation kinetics varied with chemical composition and initial solute concentration. Droplets containing BSA generally evaporated faster than droplets containing other components at 20% and 50% RH. Droplets containing 1 g/L NaCl evaporated faster than those containing 35 g/L NaCl. A previous study demonstrated that the evaporation rates of droplets containing less than 5.8 g/L NaCl was almost two times higher than for droplets containing 58 g/L NaCl at RH \u003c 60% [73]. The authors concluded that Marangoni flows induced by surface tension gradients, which originated from local peripheral salt enrichment, caused the difference in evaporation rate. We observed that droplets with higher initial SDS concentration evaporated slower than those with lower initial SDS concentration at RHs of 20% and 50%. However, the result was completely the opposite at 80% RH, at which droplets containing 10 μg/mL SDS evaporated significantly faster than those containing 1 μg/mL SDS. Droplets containing different initial BSA concentrations and at different initial pH values had similar evaporation rates across all RH levels. Since the evaporation kinetics determine the change in solute concentrations and cumulative dose, it is necessary to understand the influence of droplet chemical composition and concentrations on the evaporation rates of virus-containing droplets.","tracks":[]}