> top > docs > PMC:7589389 > annotations

PMC:7589389 JSONTXT

Annnotations TAB JSON ListView MergeView

LitCovid-PD-UBERON

Id Subject Object Predicate Lexical cue uberon_id
T1 539-543 Body_part denotes face http://purl.obolibrary.org/obo/UBERON_0001456
T2 3106-3110 Body_part denotes face http://purl.obolibrary.org/obo/UBERON_0001456
T3 5117-5121 Body_part denotes face http://purl.obolibrary.org/obo/UBERON_0001456
T4 11721-11725 Body_part denotes face http://purl.obolibrary.org/obo/UBERON_0001456
T5 12338-12342 Body_part denotes hand http://purl.obolibrary.org/obo/UBERON_0002398
T6 16588-16592 Body_part denotes face http://purl.obolibrary.org/obo/UBERON_0001456
T7 21409-21413 Body_part denotes face http://purl.obolibrary.org/obo/UBERON_0001456
T8 31863-31867 Body_part denotes face http://purl.obolibrary.org/obo/UBERON_0001456
T9 32919-32923 Body_part denotes face http://purl.obolibrary.org/obo/UBERON_0001456
T10 44634-44638 Body_part denotes face http://purl.obolibrary.org/obo/UBERON_0001456

LitCovid-PD-FMA-UBERON

Id Subject Object Predicate Lexical cue fma_id
T1 539-543 Body_part denotes face http://purl.org/sig/ont/fma/fma24728
T2 3106-3110 Body_part denotes face http://purl.org/sig/ont/fma/fma24728
T3 5117-5121 Body_part denotes face http://purl.org/sig/ont/fma/fma24728
T4 11721-11725 Body_part denotes face http://purl.org/sig/ont/fma/fma24728
T5 12025-12031 Body_part denotes mental http://purl.org/sig/ont/fma/fma264279
T6 12338-12342 Body_part denotes hand http://purl.org/sig/ont/fma/fma9712
T7 16588-16592 Body_part denotes face http://purl.org/sig/ont/fma/fma24728
T8 19303-19306 Body_part denotes H2a http://purl.org/sig/ont/fma/fma84129
T9 20492-20495 Body_part denotes H2b http://purl.org/sig/ont/fma/fma84130
T10 21409-21413 Body_part denotes face http://purl.org/sig/ont/fma/fma24728
T11 22706-22714 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T12 26118-26126 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T13 31863-31867 Body_part denotes face http://purl.org/sig/ont/fma/fma24728
T14 32919-32923 Body_part denotes face http://purl.org/sig/ont/fma/fma24728
T15 33800-33803 Body_part denotes H2a http://purl.org/sig/ont/fma/fma84129
T16 33808-33811 Body_part denotes H2b http://purl.org/sig/ont/fma/fma84130
T17 34324-34327 Body_part denotes H2a http://purl.org/sig/ont/fma/fma84129
T18 34332-34335 Body_part denotes H2b http://purl.org/sig/ont/fma/fma84130
T19 34591-34594 Body_part denotes H2a http://purl.org/sig/ont/fma/fma84129
T20 34605-34608 Body_part denotes H2a http://purl.org/sig/ont/fma/fma84129
T21 35681-35684 Body_part denotes H2a http://purl.org/sig/ont/fma/fma84129
T22 35887-35890 Body_part denotes H2a http://purl.org/sig/ont/fma/fma84129
T23 36035-36038 Body_part denotes H2a http://purl.org/sig/ont/fma/fma84129
T24 36377-36380 Body_part denotes H2b http://purl.org/sig/ont/fma/fma84130
T25 36391-36394 Body_part denotes H2b http://purl.org/sig/ont/fma/fma84130
T26 37442-37445 Body_part denotes H2b http://purl.org/sig/ont/fma/fma84130
T27 37648-37651 Body_part denotes H2b http://purl.org/sig/ont/fma/fma84130
T28 37796-37799 Body_part denotes H2b http://purl.org/sig/ont/fma/fma84130
T29 40446-40454 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T30 44634-44638 Body_part denotes face http://purl.org/sig/ont/fma/fma24728
T31 46446-46450 Body_part denotes body http://purl.org/sig/ont/fma/fma256135
T32 50398-50406 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T33 50415-50417 Body_part denotes A1 http://purl.org/sig/ont/fma/fma66592
T34 55693-55701 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T35 55710-55712 Body_part denotes A2 http://purl.org/sig/ont/fma/fma66595
T36 64996-65004 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T37 66693-66701 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T38 69537-69545 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T39 71314-71322 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T40 73039-73047 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T41 74011-74019 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T42 75483-75491 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T43 78218-78226 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T44 80943-80951 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T45 81973-81981 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T46 83172-83180 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T47 85934-85942 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T48 87156-87164 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542

LitCovid-PD-MONDO

Id Subject Object Predicate Lexical cue mondo_id
T1 133-157 Disease denotes coronavirus disease 2019 http://purl.obolibrary.org/obo/MONDO_0100096
T2 159-167 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T3 584-592 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T4 1437-1461 Disease denotes coronavirus disease 2019 http://purl.obolibrary.org/obo/MONDO_0100096
T5 1463-1471 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T6 1539-1547 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T7 2021-2029 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T8 2336-2344 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T9 2561-2569 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T10 2956-2964 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T11 4066-4074 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T12 4094-4102 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T13 4321-4329 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T14 4821-4829 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T15 7773-7781 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T16 8069-8077 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T17 8448-8456 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T18 9337-9345 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T19 9502-9510 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T20 10202-10210 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T21 10241-10249 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T22 10365-10373 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T23 10396-10404 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T24 10505-10513 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T25 10760-10768 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T26 11344-11352 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T27 11510-11518 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T28 11587-11595 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T29 11726-11734 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T30 11768-11775 Disease denotes anxiety http://purl.obolibrary.org/obo/MONDO_0005618|http://purl.obolibrary.org/obo/MONDO_0011918
T32 11806-11814 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T33 12279-12287 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T34 12557-12565 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T35 12632-12640 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T36 12768-12776 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T37 12953-12961 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T38 13042-13050 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T39 13242-13250 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T40 13274-13282 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T41 13417-13425 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T42 13632-13640 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T43 13749-13757 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T44 13939-13947 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T45 14057-14065 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T46 14159-14167 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T47 14327-14335 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T48 14993-15001 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T49 15536-15544 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T50 16084-16092 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T51 16819-16827 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T52 16923-16931 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T53 17074-17082 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T54 17475-17483 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T55 20892-20900 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T56 22050-22058 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T57 22307-22315 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T58 22456-22464 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T59 22559-22567 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T60 24569-24577 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T61 24834-24842 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T62 25020-25028 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T63 26415-26423 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T64 27332-27340 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T65 30036-30044 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T66 30310-30318 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T67 31138-31146 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T68 31208-31216 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T69 31489-31497 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T70 32784-32792 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T71 38580-38588 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T72 39185-39193 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T73 39581-39589 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T74 39972-39980 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T75 41301-41309 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T76 43100-43108 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T77 43248-43256 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T78 43597-43605 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T79 43780-43788 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T80 44074-44082 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T81 44206-44214 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T82 44679-44687 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T83 45801-45809 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T84 46505-46513 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T85 46709-46717 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T86 47191-47199 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T87 47707-47715 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T88 48295-48303 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T89 51031-51039 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T90 51625-51633 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T91 51888-51896 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T92 52153-52161 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T93 54091-54099 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T94 55048-55056 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T95 55317-55325 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T96 71109-71111 Disease denotes R2 http://purl.obolibrary.org/obo/MONDO_0019903
T97 72866-72868 Disease denotes R2 http://purl.obolibrary.org/obo/MONDO_0019903
T98 73870-73872 Disease denotes R2 http://purl.obolibrary.org/obo/MONDO_0019903
T99 75314-75316 Disease denotes R2 http://purl.obolibrary.org/obo/MONDO_0019903
T100 75326-75328 Disease denotes R2 http://purl.obolibrary.org/obo/MONDO_0019903
T101 78013-78015 Disease denotes R2 http://purl.obolibrary.org/obo/MONDO_0019903
T102 80738-80740 Disease denotes R2 http://purl.obolibrary.org/obo/MONDO_0019903
T103 81832-81834 Disease denotes R2 http://purl.obolibrary.org/obo/MONDO_0019903
T104 83031-83033 Disease denotes R2 http://purl.obolibrary.org/obo/MONDO_0019903
T105 85729-85731 Disease denotes R2 http://purl.obolibrary.org/obo/MONDO_0019903
T106 86143-86151 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T107 87015-87017 Disease denotes R2 http://purl.obolibrary.org/obo/MONDO_0019903

LitCovid-PD-CLO

Id Subject Object Predicate Lexical cue
T1 539-543 http://purl.obolibrary.org/obo/UBERON_0001456 denotes face
T2 655-660 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tests
T3 938-939 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T4 1305-1312 http://purl.obolibrary.org/obo/CLO_0009985 denotes focuses
T5 1720-1723 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T6 1724-1725 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T7 1880-1883 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T8 1997-1998 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T9 2252-2257 http://purl.obolibrary.org/obo/CLO_0009985 denotes focus
T10 2321-2326 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T11 2859-2864 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tests
T12 2974-2977 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T13 3106-3110 http://purl.obolibrary.org/obo/UBERON_0001456 denotes face
T14 3179-3180 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T15 4225-4230 http://purl.obolibrary.org/obo/CLO_0009985 denotes focus
T16 5117-5121 http://purl.obolibrary.org/obo/UBERON_0001456 denotes face
T17 5214-5215 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T18 5599-5600 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T19 5615-5619 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T20 5634-5635 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T21 5666-5667 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T22 5820-5832 http://purl.obolibrary.org/obo/OBI_0000968 denotes instrumental
T23 5952-5963 http://purl.obolibrary.org/obo/OBI_0000968 denotes instruments
T24 6100-6105 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tests
T25 6275-6276 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T26 6615-6616 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T27 7041-7046 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tests
T28 7573-7574 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T29 7651-7652 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T30 8111-8115 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T31 8492-8500 http://purl.obolibrary.org/obo/CLO_0009985 denotes focusing
T32 8847-8856 http://purl.obolibrary.org/obo/OBI_0000245 denotes organized
T33 9092-9097 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tests
T34 9359-9371 http://purl.obolibrary.org/obo/OBI_0000245 denotes Organization
T35 9487-9492 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T36 10162-10167 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T37 10250-10253 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T38 10414-10415 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T39 10523-10526 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T40 11161-11168 http://purl.obolibrary.org/obo/CLO_0009985 denotes focuses
T41 11359-11364 http://purl.obolibrary.org/obo/CLO_0009985 denotes focus
T42 11721-11725 http://purl.obolibrary.org/obo/UBERON_0001456 denotes face
T43 11757-11758 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T44 11824-11827 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T45 11828-11829 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T46 11931-11933 http://purl.obolibrary.org/obo/CLO_0050510 denotes 18
T47 11984-11985 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T48 12086-12088 http://purl.obolibrary.org/obo/CLO_0001022 denotes Li
T49 12086-12088 http://purl.obolibrary.org/obo/CLO_0007314 denotes Li
T50 12257-12259 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T51 12777-12780 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T52 12781-12782 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T53 12858-12860 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T54 13534-13539 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T55 14123-14131 http://purl.obolibrary.org/obo/CLO_0009985 denotes Focusing
T56 15512-15514 http://purl.obolibrary.org/obo/CLO_0001313 denotes 36
T57 15845-15846 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T58 16588-16592 http://purl.obolibrary.org/obo/UBERON_0001456 denotes face
T59 16661-16662 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T60 16741-16742 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T61 16995-17000 http://purl.obolibrary.org/obo/CLO_0009985 denotes focus
T62 17244-17245 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T63 17309-17314 http://purl.obolibrary.org/obo/CLO_0009985 denotes focus
T64 18207-18210 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T65 18985-18987 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T66 19299-19301 http://purl.obolibrary.org/obo/CLO_0001236 denotes 2a
T67 19772-19773 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T68 19844-19845 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T69 20020-20022 http://purl.obolibrary.org/obo/CLO_0001382 denotes 48
T70 20044-20054 http://purl.obolibrary.org/obo/CLO_0001658 denotes activities
T71 20111-20112 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T72 20150-20151 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T73 20184-20185 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T74 20346-20347 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T75 20735-20739 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T76 21132-21133 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T77 21289-21290 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T78 21409-21413 http://purl.obolibrary.org/obo/UBERON_0001456 denotes face
T79 21414-21415 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T80 21569-21570 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T81 22015-22016 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T82 22597-22599 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T83 22715-22716 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T84 23019-23022 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T85 23029-23030 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T86 23043-23047 http://purl.obolibrary.org/obo/CLO_0053733 denotes 1, 1
T87 23060-23061 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T88 23073-23077 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T89 23794-23801 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T90 23810-23813 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T91 23816-23820 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T92 24044-24048 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T93 24098-24103 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tests
T94 24135-24139 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T95 24256-24259 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T96 24256-24259 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T97 24397-24400 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T98 24458-24465 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T99 24474-24477 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T100 24480-24484 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T101 24688-24689 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T102 25278-25281 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T103 25278-25281 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T104 25298-25301 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T105 25298-25301 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T106 25388-25389 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T107 25972-25973 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T108 26127-26128 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T109 26204-26205 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T110 26333-26340 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T111 26349-26352 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T112 26355-26359 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T113 26665-26666 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T114 26702-26706 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T115 26773-26780 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T116 26789-26792 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T117 26795-26799 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T118 27215-27221 http://purl.obolibrary.org/obo/UBERON_0001456 denotes facing
T119 27404-27407 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T120 27404-27407 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T121 27506-27507 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T122 27534-27535 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T123 27621-27626 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tests
T124 27796-27803 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T125 27812-27815 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T126 27818-27822 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T127 28130-28135 http://purl.obolibrary.org/obo/CLO_0009985 denotes focus
T128 28183-28188 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tests
T129 28227-28232 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tests
T130 28439-28440 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T131 28486-28491 http://purl.obolibrary.org/obo/UBERON_0000473 denotes Tests
T132 28693-28694 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T133 28768-28771 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T134 28773-28777 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T135 28826-28827 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T136 29404-29411 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T137 29420-29423 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T138 29426-29430 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T139 29436-29437 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T140 29457-29458 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T141 29552-29553 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T142 29715-29719 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T143 30638-30645 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T144 30654-30657 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T145 30660-30664 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T146 30831-30836 http://purl.obolibrary.org/obo/UBERON_0000473 denotes Tests
T147 30895-30896 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T148 30911-30915 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T149 31167-31168 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T150 31239-31240 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T151 31371-31378 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T152 31387-31390 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T153 31393-31397 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T154 31501-31502 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T155 31863-31867 http://purl.obolibrary.org/obo/UBERON_0001456 denotes face
T156 31868-31869 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T157 32135-32136 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T158 32168-32180 http://purl.obolibrary.org/obo/OBI_0000968 denotes instrumental
T159 32297-32307 http://purl.obolibrary.org/obo/OBI_0000968 denotes instrument
T160 32686-32690 http://purl.obolibrary.org/obo/CLO_0008935 denotes s [9
T161 32862-32867 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T162 32919-32923 http://purl.obolibrary.org/obo/UBERON_0001456 denotes face
T163 33028-33029 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T164 33080-33091 http://purl.obolibrary.org/obo/OBI_0000968 denotes instruments
T165 33273-33274 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T166 33479-33486 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T167 33495-33498 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T168 33501-33505 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T169 33791-33795 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T170 33969-33972 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T171 33969-33972 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T172 34135-34136 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T173 34319-34323 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T174 34583-34587 http://purl.obolibrary.org/obo/UBERON_0000473 denotes Test
T175 36369-36373 http://purl.obolibrary.org/obo/UBERON_0000473 denotes Test
T176 36710-36711 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T177 36823-36824 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T178 38204-38205 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T179 38242-38243 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T180 38414-38415 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T181 38533-38538 http://purl.obolibrary.org/obo/UBERON_0001456 denotes faces
T182 38930-38942 http://purl.obolibrary.org/obo/UBERON_0000473 denotes testing this
T183 39338-39339 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T184 39398-39399 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T185 39406-39407 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T186 39648-39653 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T187 39675-39676 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T188 40121-40133 http://purl.obolibrary.org/obo/UBERON_0000473 denotes testing this
T189 40455-40456 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T190 40464-40466 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T191 40844-40848 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T192 40985-40986 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T193 41697-41698 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T194 41974-41978 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T195 42519-42520 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T196 43118-43119 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T197 44092-44095 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T198 44634-44638 http://purl.obolibrary.org/obo/UBERON_0001456 denotes face
T199 44750-44755 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tests
T200 45138-45143 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tests
T201 45367-45370 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T202 45371-45372 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T203 45601-45602 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T204 45679-45680 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T205 46052-46053 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T206 47092-47093 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T207 47279-47280 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T208 47303-47307 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T209 47512-47520 http://purl.obolibrary.org/obo/CLO_0009985 denotes focusing
T210 48326-48332 http://purl.obolibrary.org/obo/SO_0000418 denotes signal
T211 48359-48362 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T212 49070-49073 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T213 49175-49180 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tests
T214 49186-49198 http://purl.obolibrary.org/obo/OBI_0000968 denotes instrumental
T215 50407-50408 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T216 50464-50471 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T217 50527-50531 http://purl.obolibrary.org/obo/CLO_0053733 denotes 1, 1
T218 50673-50676 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T219 50679-50683 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T220 50735-50739 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T221 51315-51316 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T222 52317-52318 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T223 52437-52438 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T224 54677-54678 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T225 55283-55288 http://purl.obolibrary.org/obo/UBERON_0001456 denotes faced
T226 55289-55290 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T227 55420-55423 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T228 55420-55423 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T229 55438-55441 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T230 55438-55441 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T231 55512-55513 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T232 55702-55703 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T233 55710-55712 http://purl.obolibrary.org/obo/CLO_0001562 denotes A2
T234 55779-55780 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T235 55892-55896 http://purl.obolibrary.org/obo/CLO_0001053 denotes 1/21
T236 55899-55901 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T237 55904-55910 http://purl.obolibrary.org/obo/CLO_0001203 denotes 23 2
T238 55941-55943 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T239 55966-55968 http://purl.obolibrary.org/obo/CLO_0050510 denotes 18
T240 56001-56003 http://purl.obolibrary.org/obo/CLO_0050509 denotes 27
T241 56013-56017 http://purl.obolibrary.org/obo/CLO_0054060 denotes 10–2
T242 56286-56288 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T243 56291-56293 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T244 56296-56298 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T245 56301-56303 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T246 56306-56308 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T247 56311-56313 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T248 56316-56318 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T249 56321-56323 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T250 56326-56328 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T251 56331-56333 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T252 56336-56338 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T253 56341-56343 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T254 56346-56348 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T255 56351-56353 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T256 56356-56358 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T257 56361-56363 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T258 56631-56634 http://purl.obolibrary.org/obo/CLO_0001423 denotes 579
T259 57085-57087 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T260 57089-57091 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T261 57093-57095 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T262 57098-57100 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T263 57103-57105 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T264 57108-57110 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T265 57113-57115 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T266 57118-57120 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T267 57123-57125 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T268 57128-57130 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T269 57133-57135 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T270 57138-57140 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T271 57143-57145 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T272 57148-57150 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T273 57153-57155 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T274 57317-57319 http://purl.obolibrary.org/obo/CLO_0054055 denotes 71
T275 57321-57323 http://purl.obolibrary.org/obo/CLO_0054055 denotes 71
T276 57326-57328 http://purl.obolibrary.org/obo/CLO_0054055 denotes 71
T277 57331-57333 http://purl.obolibrary.org/obo/CLO_0054055 denotes 71
T278 57336-57338 http://purl.obolibrary.org/obo/CLO_0054055 denotes 71
T279 57341-57343 http://purl.obolibrary.org/obo/CLO_0054055 denotes 71
T280 57346-57348 http://purl.obolibrary.org/obo/CLO_0054055 denotes 71
T281 57351-57353 http://purl.obolibrary.org/obo/CLO_0054055 denotes 71
T282 57356-57358 http://purl.obolibrary.org/obo/CLO_0054055 denotes 71
T283 57361-57363 http://purl.obolibrary.org/obo/CLO_0054055 denotes 71
T284 57366-57368 http://purl.obolibrary.org/obo/CLO_0054055 denotes 71
T285 57371-57373 http://purl.obolibrary.org/obo/CLO_0054055 denotes 71
T286 57376-57378 http://purl.obolibrary.org/obo/CLO_0054055 denotes 71
T287 57381-57383 http://purl.obolibrary.org/obo/CLO_0054055 denotes 71
T288 57386-57388 http://purl.obolibrary.org/obo/CLO_0054055 denotes 71
T289 57776-57778 http://purl.obolibrary.org/obo/CLO_0053794 denotes 41
T290 57780-57782 http://purl.obolibrary.org/obo/CLO_0053794 denotes 41
T291 57785-57787 http://purl.obolibrary.org/obo/CLO_0053794 denotes 41
T292 57790-57792 http://purl.obolibrary.org/obo/CLO_0053794 denotes 41
T293 57795-57797 http://purl.obolibrary.org/obo/CLO_0053794 denotes 41
T294 57800-57802 http://purl.obolibrary.org/obo/CLO_0053794 denotes 41
T295 57805-57807 http://purl.obolibrary.org/obo/CLO_0053794 denotes 41
T296 57810-57812 http://purl.obolibrary.org/obo/CLO_0053794 denotes 41
T297 57815-57817 http://purl.obolibrary.org/obo/CLO_0053794 denotes 41
T298 57820-57822 http://purl.obolibrary.org/obo/CLO_0053794 denotes 41
T299 57825-57827 http://purl.obolibrary.org/obo/CLO_0053794 denotes 41
T300 57835-57837 http://purl.obolibrary.org/obo/CLO_0053794 denotes 41
T301 58400-58406 http://purl.obolibrary.org/obo/CLO_0001013 denotes 46 47
T302 58400-58406 http://purl.obolibrary.org/obo/CLO_0052464 denotes 46 47
T303 59089-59091 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T304 59093-59095 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T305 59097-59099 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T306 59101-59103 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T307 59105-59107 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T308 59109-59111 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T309 59113-59115 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T310 59117-59119 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T311 59121-59123 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T312 59125-59127 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T313 59129-59131 http://purl.obolibrary.org/obo/CLO_0053799 denotes 45
T314 59498-59499 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T315 59643-59645 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T316 59668-59670 http://purl.obolibrary.org/obo/CLO_0050510 denotes 18
T317 59703-59705 http://purl.obolibrary.org/obo/CLO_0050509 denotes 27
T318 63071-63072 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T319 63313-63315 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T320 63358-63359 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T321 63862-63868 http://purl.obolibrary.org/obo/NCBITaxon_33208 denotes animal
T322 63943-63946 http://purl.obolibrary.org/obo/CLO_0001195 denotes 219
T323 64305-64307 http://purl.obolibrary.org/obo/CLO_0001407 denotes 52
T324 64309-64311 http://purl.obolibrary.org/obo/CLO_0050509 denotes 27
T325 64694-64695 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T326 64783-64784 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T327 65005-65006 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T328 65097-65098 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T329 65196-65203 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T330 65245-65248 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T331 65251-65255 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T332 65502-65505 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T333 65502-65505 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T334 65883-65884 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T335 65902-65906 http://purl.obolibrary.org/obo/UBERON_0000473 denotes Test
T336 65993-66000 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T337 66038-66041 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T338 66044-66048 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T339 66259-66262 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T340 66259-66262 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T341 66702-66703 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T342 66790-66791 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T343 66815-66823 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [ −1
T344 66831-66834 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T345 66831-66834 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T346 66843-66848 http://purl.obolibrary.org/obo/CLO_0001302 denotes 3 4
T347 66868-66875 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T348 66943-66946 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T349 66949-66953 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T350 67361-67364 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T351 67361-67364 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T352 67572-67574 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T353 68044-68045 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T354 68099-68101 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T355 68125-68132 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T356 68208-68211 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T357 68214-68218 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T358 68669-68672 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T359 68669-68672 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T360 68882-68884 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T361 69546-69547 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T362 69685-69692 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T363 69698-69705 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T364 69711-69718 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T365 69724-69727 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T366 69730-69734 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T367 69737-69740 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T368 69743-69747 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T369 69750-69753 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T370 69756-69760 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T371 69763-69764 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T372 69768-69769 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T373 70266-70269 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T374 70266-70269 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T375 71323-71324 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T376 71486-71493 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T377 71499-71506 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T378 71512-71515 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T379 71518-71522 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T380 71525-71528 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T381 71531-71535 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T382 71538-71539 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T383 71543-71544 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T384 71989-71992 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T385 71989-71992 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T386 73048-73049 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T387 73124-73129 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tests
T388 73131-73138 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T389 73144-73147 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T390 73150-73154 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T391 73157-73158 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T392 73162-73163 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T393 73384-73387 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T394 73384-73387 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T395 74020-74021 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T396 74171-74183 http://purl.obolibrary.org/obo/OBI_0000968 denotes instrumental
T397 74218-74225 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T398 74231-74234 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T399 74237-74241 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T400 74244-74245 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T401 74249-74250 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T402 74565-74568 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T403 74565-74568 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T404 75492-75493 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T405 75684-75691 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T406 75697-75704 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T407 75710-75717 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T408 75723-75726 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T409 75729-75733 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T410 75736-75739 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T411 75742-75746 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T412 75749-75752 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T413 75755-75759 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T414 75762-75763 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T415 75767-75768 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T416 76745-76748 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T417 76745-76748 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T418 78227-78228 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T419 78409-78416 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T420 78422-78429 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T421 78435-78442 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T422 78448-78451 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T423 78454-78458 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T424 78461-78464 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T425 78467-78471 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T426 78474-78477 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T427 78480-78484 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T428 78487-78488 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T429 78492-78493 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T430 79470-79473 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T431 79470-79473 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T432 80952-80953 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T433 81092-81099 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T434 81105-81108 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T435 81111-81115 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T436 81118-81119 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T437 81123-81124 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T438 81346-81349 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T439 81346-81349 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T440 81982-81983 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T441 82041-82043 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T442 82170-82177 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [-1
T443 82183-82186 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T444 82189-82193 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T445 82196-82197 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T446 82201-82202 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T447 82545-82548 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T448 82545-82548 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T449 83181-83182 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T450 83364-83371 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T451 83377-83384 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T452 83390-83397 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T453 83403-83406 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T454 83409-83413 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T455 83416-83419 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T456 83422-83426 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T457 83429-83432 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T458 83435-83439 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T459 83442-83443 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T460 83447-83448 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T461 84447-84450 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T462 84447-84450 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T463 85943-85944 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T464 86159-86166 http://purl.obolibrary.org/obo/CLO_0009955 denotes CAR [−1
T465 86172-86175 http://purl.obolibrary.org/obo/CLO_0002199 denotes CAR
T466 86178-86182 http://purl.obolibrary.org/obo/CLO_0050507 denotes 2, 2
T467 86185-86186 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T468 86190-86191 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T469 86529-86532 http://purl.obolibrary.org/obo/CLO_0008693 denotes R&D
T470 86529-86532 http://purl.obolibrary.org/obo/CLO_0008770 denotes R&D
T471 87165-87166 http://purl.obolibrary.org/obo/CLO_0001020 denotes A

LitCovid-PD-CHEBI

Id Subject Object Predicate Lexical cue chebi_id
T1 12086-12088 Chemical denotes Li http://purl.obolibrary.org/obo/CHEBI_30145
T2 13560-13562 Chemical denotes Al http://purl.obolibrary.org/obo/CHEBI_28984
T3 19187-19191 Chemical denotes Base http://purl.obolibrary.org/obo/CHEBI_18282|http://purl.obolibrary.org/obo/CHEBI_22695
T5 21495-21500 Chemical denotes group http://purl.obolibrary.org/obo/CHEBI_24433
T6 21594-21599 Chemical denotes group http://purl.obolibrary.org/obo/CHEBI_24433
T7 22171-22180 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T8 24352-24354 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T9 24366-24368 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T10 24380-24382 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T11 24500-24509 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T12 25314-25319 Chemical denotes sales http://purl.obolibrary.org/obo/CHEBI_24866
T13 25332-25341 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T14 25913-25922 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T15 29967-29976 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T16 30241-30250 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T17 31424-31433 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T18 34070-34072 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T19 34084-34086 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T20 34098-34100 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T21 35093-35102 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T22 35308-35317 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T23 35361-35363 Chemical denotes TV http://purl.obolibrary.org/obo/CHEBI_75193
T24 35483-35492 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T25 36883-36892 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T26 37082-37091 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T27 37260-37269 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T28 39108-39117 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T29 40235-40244 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T30 41723-41728 Chemical denotes sales http://purl.obolibrary.org/obo/CHEBI_24866
T31 42120-42129 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T32 42177-42182 Chemical denotes sales http://purl.obolibrary.org/obo/CHEBI_24866
T33 42272-42281 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T34 42463-42472 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T35 43507-43516 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T45327 50954-50963 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T15327 51556-51565 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T83669 51819-51828 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T4 52084-52093 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T18471 52855-52860 Chemical denotes sales http://purl.obolibrary.org/obo/CHEBI_24866
T34300 53243-53245 Chemical denotes TV http://purl.obolibrary.org/obo/CHEBI_75193
T68799 55206-55215 Chemical denotes indicator http://purl.obolibrary.org/obo/CHEBI_47867
T85456 55454-55459 Chemical denotes sales http://purl.obolibrary.org/obo/CHEBI_24866
T55875 55669-55674 Chemical denotes sales http://purl.obolibrary.org/obo/CHEBI_24866
T50648 64204-64209 Chemical denotes water http://purl.obolibrary.org/obo/CHEBI_15377
T54705 64443-64448 Chemical denotes Water http://purl.obolibrary.org/obo/CHEBI_15377
T80225 70983-70985 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T78297 71025-71027 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T37505 71067-71069 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T95505 72770-72772 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T13272 72802-72804 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T27588 72834-72836 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T12846 73804-73806 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T11346 73826-73828 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T20816 73848-73850 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T33954 75235-75237 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T92476 75262-75264 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T70903 75289-75291 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T80167 77887-77889 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T24279 77929-77931 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T16260 77971-77973 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T22930 80612-80614 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T66178 80654-80656 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T70951 80696-80698 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T10331 81766-81768 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T53356 81788-81790 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T55125 81810-81812 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T63722 82965-82967 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T33917 82987-82989 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T6146 83009-83011 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T36 85603-85605 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T37 85645-85647 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T38 85687-85689 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T39 86949-86951 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T40 86971-86973 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712
T41 86993-86995 Chemical denotes FE http://purl.obolibrary.org/obo/CHEBI_74712

LitCovid-PD-GO-BP

Id Subject Object Predicate Lexical cue
T1 1016-1022 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T2 6527-6533 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T3 6787-6793 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T4 8808-8814 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T5 12325-12334 http://purl.obolibrary.org/obo/GO_0007610 denotes behaviors
T6 12711-12717 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T7 19811-19817 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T8 19983-19989 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T9 20258-20264 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T10 20669-20675 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T11 34434-34440 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T12 36362-36368 http://purl.obolibrary.org/obo/GO_0040007 denotes Growth
T13 36580-36586 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T14 36622-36628 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T15 36854-36860 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T16 37949-37955 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T17 45090-45096 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T18 49805-49811 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T19 64883-64892 http://purl.obolibrary.org/obo/GO_0009056 denotes breakdown
T20 78401-78407 http://purl.obolibrary.org/obo/GO_0040007 denotes growth

LitCovid-PD-HP

Id Subject Object Predicate Lexical cue hp_id
T1 11768-11775 Phenotype denotes anxiety http://purl.obolibrary.org/obo/HP_0000739
T2 13788-13793 Phenotype denotes shock http://purl.obolibrary.org/obo/HP_0031273

LitCovid-sentences

Id Subject Object Predicate Lexical cue
T1 0-51 Sentence denotes Risk Assessment on Continued Public Health Threats:
T2 52-86 Sentence denotes Evidence from China’s Stock Market
T3 88-96 Sentence denotes Abstract
T4 97-326 Sentence denotes Given the disturbing effects of the coronavirus disease 2019 (COVID-19) outbreak, we are motivated to examine whether the continued increase of the provincial public health threats affects the firms’ accumulative abnormal return.
T5 327-599 Sentence denotes Using the 178,805 firm-day observations from Chinese listed firms from 10 January to 31 March 2020, we find that the accumulative abnormal return is significantly lower among firms located in the provinces where face the continued increase of new confirmed COVID-19 cases.
T6 600-661 Sentence denotes The relations remain constant after several robustness tests.
T7 662-810 Sentence denotes These findings suggest that investors concern about the potential risk when firms are located in the provinces with higher threats to public health.
T8 811-1023 Sentence denotes We also find that the negative effect of increasing public health threats on abnormal return is weaker for firms surrounded by a provincial environment with stronger information accessibility and economic growth.
T9 1024-1224 Sentence denotes Overall, this study extends the literature by presenting systematic evidence on the effect of the continued increase of provincial public health threats on the market reaction in Chinese listed firms.
T10 1226-1228 Sentence denotes 1.
T11 1229-1241 Sentence denotes Introduction
T12 1242-1365 Sentence denotes The prior study shows that coronavirus-related research mainly focuses on virology, immunology, epidemiology, and so forth.
T13 1366-1477 Sentence denotes However, there are few studies that discuss the risk assessment on the coronavirus disease 2019 (COVID-19) [1].
T14 1478-1659 Sentence denotes Understanding how investors engage in risk assessment on the COVID-19 outbreak is an essential issue because it related to the financial market performance and economic development.
T15 1660-2053 Sentence denotes While previous studies have shown that coronavirus outbreak has a negative short-term impact on the stock market [2,3,4,5,6], and stock markets’ decline to be mainly affected by the news attention [7], no prior research has examined the question of whether and how investors view continued increasing regional public health threats from a large sample of daily COVID-19 disclosure information.
T16 2054-2248 Sentence denotes To fill this gap, we perform comprehensive analyses on the association between continued increasing provincial public health threats and firms’ market reaction based on the Chinese listed firms.
T17 2249-2300 Sentence denotes We focus on the Chinese market for several reasons.
T18 2301-2389 Sentence denotes First, the earliest human cases of COVID-19 were reported in China in December 2019 [8].
T19 2390-2591 Sentence denotes The sample period in this study is from 10 January to 31 March 2020, which shows the early evidence on the effect of continued increasing public health threats, driven by COVID-19, on the stock market.
T20 2592-2745 Sentence denotes Second, China is the largest emerging market and the second-largest economy in the world, and it plays an increasingly significant role in globalization.
T21 2746-2895 Sentence denotes Third, the institutional development across provinces in China is uneven, which enhance the statistical power of tests on the province level effects.
T22 2896-3053 Sentence denotes Overall, the research on the Chinese market reaction to the COVID-19 outbreak has profound implications for many interested parties from different countries.
T23 3054-3211 Sentence denotes We expect that firms located in the provinces where face continued increase of public health threats are more likely to have a poor stock market performance.
T24 3212-3249 Sentence denotes Three reasons support our conjecture.
T25 3250-3508 Sentence denotes First, the continued increase in the amount of new confirmed cases in one specific provincial region will enhance the uncertainty of the firms’ short-term and long-term performance in this area, which negatively influences investor valuations of local firms.
T26 3509-3650 Sentence denotes Second, the continued increase of public health threats will enhance the local economic cost and then enhance the investors’ risk assessment.
T27 3651-3860 Sentence denotes Third, the continued increase in the amount of new confirmed cases in one specific provincial region may increase the event risk, and investors would be less likely to hold the financial assets from that area.
T28 3861-3977 Sentence denotes Of course, continued increasing provincial public health threats may not affect the local firms’ market performance.
T29 3978-4081 Sentence denotes First, long-term investors might not be aware of the risks of the continued increase of COVID-19 cases.
T30 4082-4197 Sentence denotes Second, the COVID-19 outbreak may bring firms opportunities to generate more products to meet the increased demand.
T31 4198-4341 Sentence denotes Third, investors might not focus on the daily based non-financial information, which leads to less value relevance for the COVID-19 disclosure.
T32 4342-4547 Sentence denotes These possibilities create tension to our research question and, thus, whether continued increasing provincial public health threats reduce local firms’ cumulative abnormal return is an empirical question.
T33 4548-4774 Sentence denotes We empirically examine the relationship between continued increasing public health threats and firms’ stock market performance using the 178,805 firm-day observations from Chinese listed firms from 10 January to 31 March 2020.
T34 4775-5011 Sentence denotes We use continued increasing of provincial new COVID-19 cases to capture the increasing threat and use the short-window abnormal return measures to capture investors’ risk assessment of expected costs of the continued increasing threats.
T35 5012-5260 Sentence denotes Consistent with our hypothesis, we find that, compared with firms located in the province where does not face increasing public health threats, the firms surrounded by continued increasing threats have a lower level of accumulative abnormal return.
T36 5261-5404 Sentence denotes It indicates that the investor’s concern about the potential risk when firms are located in the provinces with higher threats to public health.
T37 5405-5476 Sentence denotes In addition, the main result is robust to alternative research designs.
T38 5477-5583 Sentence denotes First, we apply alternative measures of provincial public health threats and obtain consistent inferences.
T39 5584-5650 Sentence denotes Second, we add a falsification test by generating a pseudo-threat.
T40 5651-5765 Sentence denotes We do not find a significant relation between abnormal return and pseudo-threat, which strengthens our inferences.
T41 5766-5851 Sentence denotes Third, we address endogeneity concerns by applying an instrumental variable approach.
T42 5852-5964 Sentence denotes Specifically, following prior related research [9,10], we use immigrant ratio and emigrant ratio as instruments.
T43 5965-5995 Sentence denotes Our inferences keep unchanged.
T44 5996-6106 Sentence denotes Moreover, we conduct two sets of cross-sectional analyses for corroborating the inference from the main tests.
T45 6107-6264 Sentence denotes First, we conjecture that stronger provincial information accessibility will decrease the investors’ risk assessment by mitigating the information asymmetry.
T46 6265-6474 Sentence denotes We expect a negative moderate effect of information asymmetry, proxied by the higher websites rate, media coverage, and mobile internet rate, on the relationship between increasing threats and abnormal return.
T47 6475-6656 Sentence denotes Second, we assume that stronger provincial economic growth will decrease the investors’ risk assessment by enhancing the likelihood to have a positive outlook on the future economy.
T48 6657-6896 Sentence denotes Thus, we expect that the negative effect of increasing threats on market reaction is less pronounced when the provincial economic growth is stronger, proxied for by the higher gross regional product rate, employment rate, and urbanization.
T49 6897-6970 Sentence denotes Overall, the results of cross-sectional analyses support our conjectures.
T50 6971-7047 Sentence denotes To provide additional insights, we further conduct several additional tests.
T51 7048-7192 Sentence denotes First, we expect and find that continued decrease of provincial public health threats is positively related to the accumulative abnormal return.
T52 7193-7382 Sentence denotes Second, regarding the community lockdown, we find that the community lockdown mitigates the relationship between continued increasing public health threats and accumulative abnormal return.
T53 7383-7673 Sentence denotes Third, we additionally examine the firm heterogeneity in the effect of increasing threats on market reaction and find that the negative effect of increasing threats is weaker for firms with a higher level of geographical diversification, operating cash flow, and with a clean audit opinion.
T54 7674-7788 Sentence denotes Fourth, we find that our results are not driven by the fluctuations in the number of new confirmed COVID-19 cases.
T55 7789-7950 Sentence denotes Our studies contribute to the literature by examining the impact of continued increasing provincial public health threats on the local firms’ market performance.
T56 7951-8084 Sentence denotes This examination is important because it sheds light on how firms’ market reaction affected by the regional change in COVID-19 cases.
T57 8085-8385 Sentence denotes Unlike prior studies that test the market reaction at the stock market level, this paper provides evidence that continued increasing regional threats can enhance the event risk and environmental uncertainty and that investors’ risk assessment can reduce the local firms’ accumulative abnormal return.
T58 8386-8550 Sentence denotes Moreover, this paper complements studies on the impact of the COVID-19 outbreak on the market reaction by focusing on moderate effects of province-specific factors.
T59 8551-8816 Sentence denotes Specifically, we provide new insight into which provincial factors mitigate the negative effect of continued increasing public health threats on firms’ market performance (e.g., the provinces characterized by stronger information accessibility and economic growth).
T60 8817-8868 Sentence denotes The remainder of the paper is organized as follows.
T61 8869-8951 Sentence denotes Section 2 discusses the background, literature review, and hypothesis development.
T62 8952-9037 Sentence denotes Section 3 presents the sample selection, empirical model, and descriptive statistics.
T63 9038-9098 Sentence denotes Section 4 illustrates the main results and robustness tests.
T64 9099-9155 Sentence denotes Section 5 shows the results of cross-sectional analyses.
T65 9156-9214 Sentence denotes Section 6 adds additional analyses and sensitivity checks.
T66 9215-9261 Sentence denotes Section 7 provides conclusions and discussion.
T67 9263-9265 Sentence denotes 2.
T68 9266-9316 Sentence denotes Background, Literature, and Hypothesis Development
T69 9318-9322 Sentence denotes 2.1.
T70 9323-9345 Sentence denotes Background of COVID-19
T71 9346-9563 Sentence denotes World Health Organization (WHO) first released the novel coronavirus (2019-nCoV) situation report on 21 January 2020 and clarified the first human cases of COVID-19 were reported in Wuhan, China, in December 2019 [8].
T72 9564-9759 Sentence denotes The report also confirmed the initial 282 cases worldwide by 20 January 2020, which contains 278 cases from China, 1 case from Japan, 1 case from the Republic of Korea, and 2 cases from Thailand.
T73 9760-9951 Sentence denotes In China, the cases were mainly confirmed in the Hubei Province (258 cases), then 14 cases in the Guangdong Province, 5 cases in Beijing Municipality, and 1 case in Shanghai Municipality [8].
T74 9952-10104 Sentence denotes On 23 January 2020, restrictions on mobility were imposed on Wuhan city, and partial movement restrictions were enacted in numerous cities across China.
T75 10105-10240 Sentence denotes Prior studies show the positive effect of restriction of human mobility on the mitigation of the COVID-19 spread in China [9,10,11,12].
T76 10241-10332 Sentence denotes COVID-19 has shown the improvement of China’s global health technology and capability [13].
T77 10333-10489 Sentence denotes Due to the rapidly spreading of COVID-19, the WHO declared the COVID-19 outbreak a Public Health Emergency of International Concern on 30 January 2020 [14].
T78 10490-10634 Sentence denotes Worldwide, the COVID-19 pandemic has infected 9,843,073 cases and lead to 495,760 deaths by 10:00 CEST, 20 June 2020, according to the WHO [15].
T79 10635-10853 Sentence denotes Specifically, by the WHO region, Americas, Europe and Eastern Mediterranean had higher amount of confirmed cases (deaths) of COVID-19, 4,933,972 (241,931), 2,656,437 (196,541) and 1,024,222 (23,449), respectively [15].
T80 10855-10859 Sentence denotes 2.2.
T81 10860-10877 Sentence denotes Literature Review
T82 10878-11079 Sentence denotes Zhang and Shaw [1] investigate the content of coronavirus-related research published in the journals indexed in the Science Citation Index Expanded and Social Sciences Citation Index from 2000 to 2020.
T83 11080-11221 Sentence denotes Furthermore, the textual analysis shows that coronavirus-related research mainly focuses on virology, immunology, epidemiology, and so forth.
T84 11222-11286 Sentence denotes However, there are few studies that discuss the risk assessment.
T85 11287-11519 Sentence denotes In addition, in Di Gennaro et al.’s [16] review paper on COVID-19, they focus on the literature about epidemiology, pathophysiology, diagnosis, management, and future perspective, but not the social and economic impacts of COVID-19.
T86 11520-11859 Sentence denotes Regarding prior studies on investigating the social impacts of the COVID-19 outbreak, Ahmed et al.’s [17] questionnaire results demonstrate that dental practitioners who are working in the areas where face COVID-19 pandemic threats show a state of anxiety and fear, which suggests that COVID-19 outbreak has a negative effect on sentiment.
T87 11860-11935 Sentence denotes Similar survey results show in Israeli dentists and dental hygienists [18].
T88 11936-12085 Sentence denotes In addition, Auerbach and Miller [19] highlight a severe issue regarding the shortage of mental health professionals due to the coronavirus pandemic.
T89 12086-12234 Sentence denotes Li et al. [20] and Wang et al. [21] also illustrate that social risks lead to negative psychological consequences with increasing negative emotions.
T90 12235-12438 Sentence denotes Besides, Chen et al. [22] document that the COVID-19 oriented risk positively affects the behaviors of hand-washing and mask-wearing based on the survey data from primary school students in Wuhan, China.
T91 12439-12566 Sentence denotes Moreover, He et al. [23] approve the evidence that discrimination and social exclusion occurred after the outbreak of COVID-19.
T92 12567-12886 Sentence denotes Regarding prior studies on investigating the economic impacts of COVID-19 outbreak, first, for the cross-country studies, Ashraf [24] finds the growth in the number of country-level confirmed cases of COVID-19 has a negative effect on stock markets based on the 64 countries over the period 22 January to 17 April 2020.
T93 12887-13004 Sentence denotes In addition, Engelhardt et al. [7] confirm that news attention of COVID-19 associate with the stock markets’ decline.
T94 13005-13150 Sentence denotes Also, Zhang et al. [4] show that the COVID-19 pandemic leads to an increase in global financial market risks based on the cross-country evidence.
T95 13151-13292 Sentence denotes Moreover, Liu et al. conduct an event study method and find that stock markets affected by COVID-19 fell quickly after the COVID-19 outbreak.
T96 13293-13559 Sentence denotes Second, for the single country studies, based on the statistical figure from India, Singh and Neog [25] illustrate that the COVID-19 outbreak leads to an economic contraction in terms of macro-economy, tourism, transportation, stock market, human capital, and trade.
T97 13560-13690 Sentence denotes Al-Awadhi et al. [3] use Chinese data and find that daily new confirmed COVID-19 cases and deaths negatively affect stock returns.
T98 13691-13852 Sentence denotes Based on the U.S. daily data Sharif et al. [26] show that COVID-19 leads to oil price volatility shock, economic policy uncertainty, and stock market volatility.
T99 13853-13988 Sentence denotes Using U.K. data from 2 January to 20 May 2020, Griffith et al. [5] show the impact of COVID-19 on share prices differs from industries.
T100 13989-14122 Sentence denotes However, the relationship between the regional continued increasing COVID-19 cases and the firms’ market reaction remains unexplored.
T101 14123-14376 Sentence denotes Focusing on the early period of the COVID-19 outbreak in China, this study attempts to fill the gap and investigate the negative effect of continued increasing provincial public health threats (driven by COVID-19) on the local firms’ market performance.
T102 14378-14382 Sentence denotes 2.3.
T103 14383-14405 Sentence denotes Hypothesis Development
T104 14407-14413 Sentence denotes 2.3.1.
T105 14414-14429 Sentence denotes Main Hypothesis
T106 14430-14548 Sentence denotes Continued increasing public health threats can negatively affect cumulative abnormal return for the following reasons.
T107 14549-14685 Sentence denotes First, prior studies show that environmental uncertainty will negatively influence investor valuations and investor sentiment [6,27,28].
T108 14686-14785 Sentence denotes Also, prior studies show that individual psychology is related to stock price valuation [29,30,31].
T109 14786-14973 Sentence denotes Moreover, based on the Sina-Weibo (Chinese microblogging website) content analysis, Han et al. [32] show that public sentiments are sensitively affected by the epidemic and social events.
T110 14974-15272 Sentence denotes In the case of the COVID-19 outbreak in China, the continued increase in the amount of new confirmed cases in one specific provincial region will enhance the uncertainty of the firms’ short-term and long-term performance in this area, which negatively influences investor valuations of local firms.
T111 15273-15427 Sentence denotes Second, prior research shows that the outbreak of the disease would increase the economic cost and shrink the profits in international markets [33,34,35].
T112 15428-15516 Sentence denotes In addition, economic conditions would affect the investors’ expectations of risks [36].
T113 15517-15743 Sentence denotes In the case of the COVID-19 outbreak in China, the continued increase in the amount of new confirmed cases in one specific provincial region will enhance the local economic cost and then enhance the investors’ risk assessment.
T114 15744-15892 Sentence denotes Third, several studies show that event risks (e.g., pollution events, hurricane disasters) will have a negative effect on firm valuation [37,38,39].
T115 15893-16064 Sentence denotes Moreover, Liu et al. [40] emphasize that significant events lead to abrupt changes in stock prices and volatility, and investors are more likely to hold less risky assets.
T116 16065-16313 Sentence denotes In the case of the COVID-19 outbreak in China, the continued increase in the amount of new confirmed cases in one specific provincial region may increase the event risk and investors would be less likely to hold the financial assets from that area.
T117 16314-16435 Sentence denotes Overall, firms’ market performance may be negatively affected by the regional continued increasing public health threats.
T118 16436-16528 Sentence denotes Based on the above discussions, the first hypothesis is as follows (in an alternative form):
T119 16529-16693 Sentence denotes Hypothesis 1 (H1).  Firms located in the provinces where face continued increase of public health threats are more likely to have a poor stock market performance.
T120 16694-16839 Sentence denotes Notwithstanding the above arguments, there are a few reasons why firms’ market performance may not be negatively affected by COVID-19 situations.
T121 16840-16938 Sentence denotes First, some investors might not be aware of the risks of the continued increase of COVID-19 cases.
T122 16939-17061 Sentence denotes Even if investors have this awareness, they would still focus on the long-term performance of their investment portfolios.
T123 17062-17281 Sentence denotes Second, the COVID-19 outbreak may bring opportunities to firms for generating more products to meet the increased demand currently and in the near future, which potentially leads to a positive effect on the performance.
T124 17282-17495 Sentence denotes Third, investors might not focus on the daily based non-financial information from the National Health Commission of the People’s Republic of China, which leads to less value relevance for the COVID-19 disclosure.
T125 17496-17576 Sentence denotes Taken together, whether the results consistent with H1 is an empirical question.
T126 17578-17584 Sentence denotes 2.3.2.
T127 17585-17609 Sentence denotes Cross-Sectional Analyses
T128 17610-17991 Sentence denotes To support the theory and main hypothesis that the regional continued increasing public health threats influence the local firms’ market performance by enhancing the environmental uncertainty and investors’ risk assessment, we propose two sets of cross-sectional predictions that analyze the variation in the regional public health threats-oriented uncertainty and risk assessment.
T129 17992-18155 Sentence denotes One crucial channel underlying H1 is that continued increasing provincial public health threats can influence investor sentiment, thus enhance the risk assessment.
T130 18156-18254 Sentence denotes Prior research suggests that information asymmetry has an effect on investor sentiment [41,42,43].
T131 18255-18420 Sentence denotes Specifically, Schmeling [42] finds that information asymmetry amplifies the negative effect of sentiment on future stock returns based on the cross-country evidence.
T132 18421-18600 Sentence denotes In the case of regional information accessibility, we conjecture that if the investor could access more regional information, they will be less sentiment about increasing threats.
T133 18601-18736 Sentence denotes We expect that stronger information accessibility will decrease the investors’ risk assessment by mitigating the information asymmetry.
T134 18737-18955 Sentence denotes Consistent with this notion, Chakravarty et al. [44] apply the number of news reports as an inverse measure of information asymmetry and find that the number of news reports reduces the magnitude of the price discount.
T135 18956-19186 Sentence denotes In addition, Bonsall et al. [45] find that wider media coverage, in terms of the news article number regarding earnings announcement, relates to the improvement in investor informedness during periods of higher market uncertainty.
T136 19187-19287 Sentence denotes Base on the discussion, our first cross-sectional hypothesis is as follows (in an alternative form):
T137 19288-19509 Sentence denotes Hypothesis 2a (H2a).  The negative effect of continued increasing provincial public health threats on market reaction, as hypothesized in H1, is less pronounced when the provincial information accessibility is stronger.
T138 19510-19728 Sentence denotes For the primary hypothesis, we assume that provincial continued increasing threats reduce the local firms’ stock market performance because such circumstances can enhance the uncertainty and investors’ risk assessment.
T139 19729-19905 Sentence denotes However, if such circumstances occurred in a province where shows strong economic growth, then investors will have a lower level of risk assessment to constrain the investment.
T140 19906-19998 Sentence denotes Prior studies documents that long-term equity premium is related to economic growth [46,47].
T141 19999-20207 Sentence denotes Moreover, Ludvigson [48] shows that economic activities relate to consumer confidence, and Chen [49] finds that a lack of consumer confidence leads to a higher likelihood of turning to a bearish stock market.
T142 20208-20398 Sentence denotes Taken together, we suppose that stronger economic growth will decrease the investors’ risk assessment by enhancing the likelihood to have a positive outlook on the future market performance.
T143 20399-20476 Sentence denotes Our second cross-sectional hypothesis is as follows (in an alternative form):
T144 20477-20688 Sentence denotes Hypothesis 2b (H2b).  The negative effect of continued increasing provincial public health threats on market reaction, as hypothesized in H1, is less pronounced when the provincial economic growth is stronger.
T145 20690-20692 Sentence denotes 3.
T146 20693-20708 Sentence denotes Research Design
T147 20710-20714 Sentence denotes 3.1.
T148 20715-20731 Sentence denotes Sample Selection
T149 20732-20816 Sentence denotes To test our hypotheses, we use the Chinese setting from 10 January to 31 March 2020.
T150 20817-21125 Sentence denotes The financial and executive data is collected from the CSMAR database; the COVID-19 data is collected from the National Health Commission of the People’s Republic of China; the stock price is collected from the RESSET database; and the province-level data is collected from the National Bureau of Statistics.
T151 21126-21180 Sentence denotes Panel A in Table 1 shows the sample selection process.
T152 21181-21282 Sentence denotes After dropping the sample with missing data, the final sample contains 178,805 firm-day observations.
T153 21283-21341 Sentence denotes Panel B of Table 1 shows the sample distribution by month.
T154 21342-21483 Sentence denotes There are 237 firm-day observations for firms located in provinces face a continued increase in public health threats (CIPHT = 1) in January.
T155 21484-21626 Sentence denotes The sample group of CIPHT = 1 increased dramatically during February, while there is a declining trend in the group of CIPHT = 1 during March.
T156 21627-21688 Sentence denotes Panel C of Table 1 shows the sample distribution by industry.
T157 21689-21807 Sentence denotes Firms from the manufacturing industry dominate the full sample, which is consistent with China’s industrial structure.
T158 21808-21899 Sentence denotes The proportion of cross-industry distribution in sub-samples is similar to the full sample.
T159 21901-21905 Sentence denotes 3.2.
T160 21906-21963 Sentence denotes The Measure of Continued Increasing Public Health Threats
T161 21964-22141 Sentence denotes We attempt to evaluate public health threats using a continued increase of provincial COVID-19 cases to ascertain the investors’ reaction to the local increasing health threats.
T162 22142-22250 Sentence denotes Specifically, we generate an indicator variable (CIPHT) to represent the regional increasing health threats.
T163 22251-22401 Sentence denotes Here CIPHT equals one if there have been provincial new COVID-19 cases for at least six consecutive days including the current day and zero otherwise.
T164 22402-22554 Sentence denotes The information on daily province-level new confirmed COVID-19 cases is collected from the National Health Commission of the People’s Republic of China.
T165 22555-22643 Sentence denotes The COVID-19 disclosure news started from 11 January and contained data from 10 January.
T166 22644-22717 Sentence denotes The daily based distribution of CIPHT = 1 sample is listed in Appendix B.
T167 22719-22723 Sentence denotes 3.3.
T168 22724-22754 Sentence denotes The Measure of Market Reaction
T169 22755-22892 Sentence denotes We apply the cumulative abnormal return to represent the short-window market reaction to the continued increase of public health threats.
T170 22893-23269 Sentence denotes Particularly, following the prior studies [38,50,51,52,53], we compute two measures of the firm’s cumulative abnormal return (CAR) with a three-day [−1, 1] window and a five-day [−2, 2] window based on the market model as follows:Firm Return = β0 + β1Market Return + ε(1) where Firm Return is the firm’s daily stock return, and Market Return is the daily stock market return.
T171 23270-23527 Sentence denotes Similar to the prior studies [51,54], we estimate the value of the constant term (β0) and the systematic risk of the stock (β1) based on model (1) over the period from current day 200 to current day 60 ([−200, −60]) and day 0 is the date of the current day.
T172 23528-23682 Sentence denotes Then we get the abnormal returns by calculating the residuals of model (1) with the estimated value of the constant term and systematic risk of the stock.
T173 23683-23823 Sentence denotes Finally, we generate two types of cumulative abnormal returns around the three-day and five-day short windows (CAR [−1, 1] and CAR [−2, 2]).
T174 23824-23975 Sentence denotes These two short-window abnormal return measures capture investors’ risk assessment of expected costs of the continued increasing public health threats.
T175 23977-23981 Sentence denotes 3.4.
T176 23982-23997 Sentence denotes Empirical Model
T177 23998-24055 Sentence denotes We describe the regression model for the main test of H1.
T178 24056-24131 Sentence denotes The regression models for cross-sectional tests are described in Section 5.
T179 24132-24663 Sentence denotes To test H1, we apply the multiple regression model as follows:CAR = β0 + β1CIPHT + β2PRO_CASE + β3SIZE + β4ROA + β5CURR + β6R&D + β7LOSS+ β8LEV + β9OPCF + β10TURN + β11CEO_AGE+ β12CEO_COM + β13CEO_TEN+ β14CEO_DUA + Week FE + Industry FE + Province FE + ε(2) where CAR refers to our two types of accumulative abnormal return (CAR [−1, 1] and CAR [−2, 2]), CIPHT is an indicator variable that equals one if there have been provincial new COVID-19 cases for at least six consecutive days including the current day and zero otherwise.
T180 24664-24720 Sentence denotes Based on H1, we suppose a negative coefficient of CIPHT.
T181 24721-24793 Sentence denotes Model (2) contains several determinants of accumulative abnormal return.
T182 24794-24925 Sentence denotes Considering that provincial accumulated COVID-19 cases would affect the investors’ risk assessment, we add PRO_CASE into our model.
T183 24926-25062 Sentence denotes PRO_CASE is the six-day mean value of the provincial ratio of the daily accumulated confirmed COVID-19 cases to the resident population.
T184 25063-25174 Sentence denotes Moreover, along with prior studies, we control the firm attributes that will affect abnormal return [39,55,56].
T185 25175-25581 Sentence denotes SIZE is the natural logarithm of total assets; ROA is the return on assets; CURR is the current ratio; R&D is the ratio of R&D expenses to sales; LOSS is an indicator variable that equals one if the firm suffered a loss and zero otherwise; LEV is the leverage ratio of total liabilities to total assets; OPCF is the ratio of the firm’s operating cash flow to total assets; TURN is the asset turnover ratio.
T186 25582-25693 Sentence denotes In addition, following prior studies [55,57,58,59], we add CEO attributes that will affect the market reaction.
T187 25694-26029 Sentence denotes CEO_AGE is the age of the firm’s CEO; CEO_COM is the ratio of the firm’s CEO compensation to the net income; CEO_TEN is the tenure of the firm’s CEO that is defined as days of CEO’s tenure divided by 365; CEO_DUA is an indicator variable that equals one if the firm’s CEO holds a concurrent post in other work units and zero otherwise.
T188 26030-26117 Sentence denotes Finally, we add week fixed effects, industry fixed effects, and province fixed effects.
T189 26118-26168 Sentence denotes Appendix A presents detailed variable definitions.
T190 26170-26174 Sentence denotes 3.5.
T191 26175-26197 Sentence denotes Descriptive Statistics
T192 26198-26307 Sentence denotes Panel A of Table 2 presents the descriptive statistics on all variables in the model (2) for the full sample.
T193 26308-26512 Sentence denotes The median values of the CAR [−1, 1] and CAR [−2, 2] are −0.004 and −0.005, which suggests that during the COVID-19 outbreak period, more than half of the assessments of the firm performance are negative.
T194 26513-26658 Sentence denotes The mean value of CIPHT is 0.360, which shows that there is 36.0 percent of the observations show the continued increasing public health threats.
T195 26659-26753 Sentence denotes Panel B of Table 2 reports mean difference test between sub-samples (CIPHT = 0 vs. CIPHT = 1).
T196 26754-26991 Sentence denotes The mean values of CAR [−1, 1] and CAR [−2, 2] are significantly lower for firm-days with continued increasing public health threats (−0.001 and −0.001) than for those without continued increasing public health threats (0.000 and 0.000).
T197 26992-27133 Sentence denotes This result provides preliminary support on the negative relationship between continued increasing public health threats and abnormal return.
T198 27134-27552 Sentence denotes Regarding the determinations of accumulative abnormal return, we find that firms facing continued increasing public health threats are located in the provinces where have more confirmed accumulated COVID-19 cases; have the larger size and better performance; have lower R&D ratio and leverage ratio; and hire CEOs with younger age, higher compensation, longer tenure, and a higher likelihood to hold a concurrent post.
T199 27553-27718 Sentence denotes Table 3 reports the correlation matrix of the variables in the main tests—Pearson correlations in the lower diagonal and Spearman correlations in the upper diagonal.
T200 27719-28054 Sentence denotes For the Pearson correlation, the two measures of cumulative abnormal return (CAR [−1, 1] and CAR [−2, 2]) are significantly and negatively correlated with provincial continued increasing public health threats (CIPHT), which is consistent with H1 that increasing provincial threats positively affect the risk assessment of the investor.
T201 28055-28209 Sentence denotes Given that the results in Table 3 are pairwise univariate correlations, we focus the primary analyses based on the multivariate tests in the next section.
T202 28210-28387 Sentence denotes For multivariate tests, we calculate the VIF for each variable in the regression model (2) and find that all VIF values of variables, exclude the fixed effects, are less than 4.
T203 28388-28467 Sentence denotes Thus, our multivariate analyses are not subject to a multicollinearity problem.
T204 28469-28471 Sentence denotes 4.
T205 28472-28497 Sentence denotes Main Analyses―Tests of H1
T206 28499-28503 Sentence denotes 4.1.
T207 28504-28524 Sentence denotes Full Sample Analyses
T208 28525-28679 Sentence denotes Table 4 presents the multiverse regression results on the association between continued increasing public health threats and accumulative abnormal return.
T209 28680-28812 Sentence denotes The Columns (A) and (D) show the results of the full sample with the dependent variable CAR, test variable CIPHT, and fixed effects.
T210 28813-28899 Sentence denotes The Columns (B) and (E) add nine variables that affect the cumulative abnormal return.
T211 28900-29005 Sentence denotes Moreover, Columns (C) and (F) further add four CEO attributes that affect the cumulative abnormal return.
T212 29006-29093 Sentence denotes We find that the coefficients on CIPHT in all columns are all negative and significant.
T213 29094-29262 Sentence denotes These results indicate that the accumulative abnormal return is lower for firm-days with the continued increase in provincial public health threats, consistent with H1.
T214 29263-29605 Sentence denotes Regarding the economic significance, the magnitude of the coefficients in Columns (C) and (F) suggest that the accumulative abnormal return (CAR [−1, 1] and CAR [−2, 2]) of a firm surrounded by a continued increasing public health threat is on average about 0.1 percent lower than that of a firm without continued regional increasing threats.
T215 29607-29611 Sentence denotes 4.2.
T216 29612-29668 Sentence denotes Alternative Measures of Provincial Public Health Threats
T217 29669-29856 Sentence denotes Considering the potential measurement bias on test variables might drive the empirical results, we replace the CIPHT with alternative variables CIPHT2 and CIPHT3 and rerun the regression.
T218 29857-30405 Sentence denotes Here, CIPHT2 is an alternative variable for continued increasing public health threats that is measured as an indicator variable that equals one if there have been provincial new COVID-19 cases for at least seven consecutive days including the current day and zero otherwise; and CIPHT3 is an alternative variable for continued increasing public health threats that is measured as an indicator variable that equals one if there have been provincial new COVID-19 cases for at least five consecutive days including the current day and zero otherwise.
T219 30406-30541 Sentence denotes Table 5 shows the relation between alternative measures of continued increasing public health threats and accumulative abnormal return.
T220 30542-30810 Sentence denotes Both alternative measures (i.e., CIPHT2 and CIPHT3) are negatively and significantly related to CAR [−1, 1] and CAR [−2, 2], which reinforces our inference that continued increasing public health threats play an important role in increasing investors’ risk assessment.
T221 30812-30816 Sentence denotes 4.3.
T222 30817-30836 Sentence denotes Falsification Tests
T223 30837-30916 Sentence denotes In order to further strengthen the inferences, we conduct a falsification test.
T224 30917-31217 Sentence denotes If the observed negative cumulative abnormal returns are indeed driven by the continued increase of public health threats, they are more likely to be concentrated around the days of the continued increase in the cases of COVID-19, not around days of a non-continued increase in the cases of COVID-19.
T225 31218-31399 Sentence denotes Specifically, we use a different day as the pseudo-continued increase of public health threats day (Pseudo_CIPHT) and repeat the same analyses involving CAR [−1, 1] and CAR [−2, 2].
T226 31400-31613 Sentence denotes Here Pseudo_CIPHT is an indicator variable that equals one if there are no new cases for COVID-19 in a firm’s province on the current day, but new cases continued to occur in the last five days and zero otherwise.
T227 31614-31671 Sentence denotes Table 6 reports the regressing results for this analysis.
T228 31672-31769 Sentence denotes As reported in the table, the coefficient on Pseudo_CIPHT is insignificantly different from zero.
T229 31770-32061 Sentence denotes It suggests that cumulative abnormal return does not negatively change for firms that do not face a continued increase of public health threats, providing further credence to the notion that the results reported in Table 4 are attributable to the continued increase of public health threats.
T230 32063-32067 Sentence denotes 4.4.
T231 32068-32088 Sentence denotes Endogeneity Concerns
T232 32089-32199 Sentence denotes To address the endogeneity concerns, we apply a two-stage least squares (2SLS) instrumental variable approach.
T233 32200-32343 Sentence denotes In the first-stage regression, we regress the continued increase of public health threats on two instrument variables (IMMIGRANT and EMIGRANT).
T234 32344-32570 Sentence denotes Here, IMMIGRANT is the six-day mean value of the ratio of the daily provincial immigrants to the national immigrants; and EMIGRANT is the six-day mean value of the ratio of the daily provincial emigrants to national emigrants.
T235 32571-32641 Sentence denotes The daily mobility data is collected from the Baidu Migration website.
T236 32642-32971 Sentence denotes Based on Jia et al. [10] and Kraemer et al.’s [9] findings, we argue that when the provincial immigrant (emigrant) rate is increased, the new COVID-19 cases are more (less) likely to be confirmed for the out-in (in-out) human mobility, enhancing (decreasing) the likelihood to face the continued increasing public health threats.
T237 32972-33155 Sentence denotes We report the first-stage regression results in Column (A) of Table 7, where we regression CIPHT on all two instruments and the control variables added in the second-stage regression.
T238 33156-33263 Sentence denotes We find that the coefficient of EMIGRANT is negative and significant, which consistent with our conjecture.
T239 33264-33338 Sentence denotes Columns (B) and (C) of Table 7 report the second-stage regression results.
T240 33339-33521 Sentence denotes We find that the coefficient of Predicted_CIPHT, estimated from the first-stage regression, is negatively and significantly associated with CAR [−1, 1] and CAR [−2, 2], respectively.
T241 33522-33736 Sentence denotes Accordingly, the robust results based on the 2SLS approach mitigate endogeneity concerns and strengthen the main inference that continued increasing public health threats significantly influence market performance.
T242 33738-33740 Sentence denotes 5.
T243 33741-33765 Sentence denotes Cross-Sectional Analyses
T244 33767-33771 Sentence denotes 5.1.
T245 33772-33787 Sentence denotes Research Design
T246 33788-34274 Sentence denotes To test the H2a and H2b, we generate the regression model as follows:CAR = β0 + β1CIPHT + β2CIPHT × Conditioning_VAR + β3Conditioning_VAR + β4PRO_CASE + β5SIZE + β6ROA + β7CURR + β8R&D + β9LOSS + β10LEV + β11OPCF + β12TURN + β13CEO_AGE+ β14CEO_COM + β15CEO_TEN + β16CEO_DUA + Week FE + Industry FE + Province FE + ε(3) where Conditioning_VAR is a conditioning variable that moderates the association between continued increasing public health threats and accumulative abnormal return.
T247 34275-34315 Sentence denotes All other variables are above-mentioned.
T248 34316-34455 Sentence denotes To test H2a and H2b, Conditioning_VAR is in terms of the provincial information accessibility and provincial economic growth, respectively.
T249 34456-34512 Sentence denotes We explain the detail proxies in the following sections.
T250 34514-34518 Sentence denotes 5.2.
T251 34519-34594 Sentence denotes The Conditioning Effect of Provincial Information Accessibility―Test of H2a
T252 34595-34816 Sentence denotes Regrading H2a, we investigate whether the continued increasing public health threats in decreasing the accumulative abnormal return is weaker in firms that located in the provinces with stronger information accessibility.
T253 34817-34953 Sentence denotes We suppose that stronger information accessibility will decrease the investors’ risk assessment by mitigating the information asymmetry.
T254 34954-35071 Sentence denotes We apply three proxies (High_WEB, High_MED, and High_MOB) to represent stronger provincial information accessibility.
T255 35072-35672 Sentence denotes Here, High_WEB is an indicator variable that equals one if the provincial ratio of the number of websites per 100 enterprises to resident population is higher than or equal to the upper quartile value and zero otherwise; High_MED is an indicator variable that equals one if the provincial TV coverage rate of population is higher than or equal to the upper quartile value and zero otherwise; and High_MOB is an indicator variable that equals one if the provincial ratio of flow accessed to mobile internet to resident population is higher than or equal to the upper quartile value and zero otherwise.
T256 35673-35846 Sentence denotes For the H2a, we substitute Conditioning_VAR in Model (3) with High_WEB, High_MED, and High_MOB, respectively, and expect the coefficient of the interaction term is positive.
T257 35847-35891 Sentence denotes Table 8 shows the regression results on H2a.
T258 35892-36308 Sentence denotes We find that the interaction terms of CIPHT × High_WEB, CIPHT × High_MED, and CIPHT × High_MOB are positive and significant, which support the H2a that the negative effect of continued increasing provincial public health threats on market reaction is less pronounced when the provincial information accessibility is stronger (in terms of higher websites rate, higher media coverage, and higher mobile internet rate).
T259 36310-36314 Sentence denotes 5.3.
T260 36315-36380 Sentence denotes The Conditioning Effect of Provincial Economic Growth―Test of H2b
T261 36381-36587 Sentence denotes Regrading H2b, we investigate whether the continued increasing public health threats in decreasing the accumulative abnormal return is weaker in firms located in the provinces with stronger economic growth.
T262 36588-36751 Sentence denotes We suppose that stronger economic growth will decrease the investors’ risk assessment by enhancing the likelihood to have a positive outlook on the future economy.
T263 36752-36861 Sentence denotes We apply three proxies (High_GRP, High_EMR, and High_URB) to represent a stronger provincial economic growth.
T264 36862-37433 Sentence denotes Here, High_GRP is an indicator variable that equals one if the provincial ratio of the gross regional product to resident population is higher than or equal to the upper quartile value and zero otherwise; High_EMR is an indicator variable that equals one if the provincial employment rate in the urban area is higher than or equal to the upper quartile value and zero otherwise; and High_URB is an indicator variable that equals one if the provincial ratio of urban population to resident population is higher than or equal to the upper quartile value and zero otherwise.
T265 37434-37607 Sentence denotes For the H2b, we substitute Conditioning_VAR in Model (3) with High_GRP, High_EMR, and High_URB, respectively, and expect the coefficient of the interaction term is positive.
T266 37608-37652 Sentence denotes Table 9 shows the regression results on H2b.
T267 37653-38066 Sentence denotes We find that the interaction terms of CIPHT × High_GRP, CIPHT × High_EMR, and CIPHT × High_URB are positive and significant, which support the H2b that the negative effect of continued increasing provincial public health threats on market reaction is less pronounced when the provincial economic growth is stronger (in terms of higher gross regional product rate, higher employment rate, and higher urbanization).
T268 38068-38070 Sentence denotes 6.
T269 38071-38113 Sentence denotes Additional Analyses and Sensitivity Checks
T270 38115-38119 Sentence denotes 6.1.
T271 38120-38163 Sentence denotes Continued Decrease of Public Health Threats
T272 38164-38321 Sentence denotes To triangulate our results, we identify a situation that the firms located in a province where the threats of local public health are continually decreasing.
T273 38322-38504 Sentence denotes The argument underlying H1 is that provincial increasing public health threats will lead to a lower level of accumulative abnormal return by enhancing the investors’ risk assessment.
T274 38505-38786 Sentence denotes Presumably, if the province faces continued zero cases for newly confirmed COVID-19 that it does not have an adverse impact on decreasing public health threats to the local firms, investors will restrain the extent of risk assessment and investor trust can be expected to increase.
T275 38787-38925 Sentence denotes Thus, we conjecture that continued decrease of provincial public health threats is positively related to the accumulative abnormal return.
T276 38926-39026 Sentence denotes For testing this assumption, we substitute the CIPHT with CDPHT in Model (2) and run the regression.
T277 39027-39279 Sentence denotes Here, CDPHT represents continued decreasing public health threats measured as an indicator variable that equals one if there have not been any provincial new COVID-19 cases for at least six consecutive days including the current day and zero otherwise.
T278 39280-39329 Sentence denotes Table 10 presents the results of this assumption.
T279 39330-39462 Sentence denotes We find a positive and significant coefficient on CDPHT in Columns (A) and (B), respectively, which consistent with our predictions.
T280 39464-39468 Sentence denotes 6.2.
T281 39469-39509 Sentence denotes The Effectiveness of Community Lockdown:
T282 39510-39542 Sentence denotes Pre- versus Post-Lockdown Period
T283 39543-39714 Sentence denotes Considering the speedily spreading of COVID-19 in Wuhan province, Chinese governance decided to restrict human mobility by ordering a Wuhan lockdown since 23 January 2020.
T284 39715-39821 Sentence denotes Moreover, China extends lockdown to more areas by implementing the “closed community management” measures.
T285 39822-39896 Sentence denotes In February 2020, many provinces had selected the community lockdown mode.
T286 39897-39981 Sentence denotes Prior research [9] finds that lockdown effectively mitigated the spread of COVID-19.
T287 39982-40116 Sentence denotes We expect investors may notice the positive effects of lockdown and will restrain the risk assessment during the post-lockdown period.
T288 40117-40209 Sentence denotes For testing this assumption, we substitute Conditioning_VAR in Model (3) with POST_Lockdown.
T289 40210-40377 Sentence denotes Here POST_Lockdown is an indicator variable that equals one if the firm is in periods after implementing the "closed community management" measures and zero otherwise.
T290 40378-40457 Sentence denotes The information of the lockdown periods by province is shown in the Appendix B.
T291 40458-40767 Sentence denotes Table 11 shows the regression results, and we find that the coefficients of CIPHT × POST_Lockdown in both columns are positive and significant, which consistent with our assumption that community lockdown could mitigate the effect of continued increasing public health threats on accumulative abnormal return.
T292 40769-40773 Sentence denotes 6.3.
T293 40774-40814 Sentence denotes The Impact of Firm-Level Characteristics
T294 40815-40944 Sentence denotes In an additional sensitivity test, we examine the firm heterogeneity in the effect of continued increasing public health threats.
T295 40945-41168 Sentence denotes The first assumption is that firms with a lower level of local consumer demand or geographical concentration of local businesses are more likely to mitigate the business risk raised by local public health threat [60,61,62].
T296 41169-41406 Sentence denotes The second assumption is that firms with higher levels of operating cash flow are more likely to overcome the difficulty during the COVID-19 outbreak by improving the supply chain risk management [63] and investment diversification [64].
T297 41407-41642 Sentence denotes The third assumption is that compare to the firms with non-clean audit opinions, the firms with clean auditor opinions on their financial reports are more likely to gain investor trust by showing reliable financial information [65,66].
T298 41643-41855 Sentence denotes Following these arguments, we predict that firms with a higher level of foreign sales, operating cash flow, and with clean audit opinions are more likely to receive investor trust and have lower management risks.
T299 41856-41970 Sentence denotes As such, continued increasing provincial public health threats is less useful for firms with such characteristics.
T300 41971-42096 Sentence denotes To test our assumption, we substitute Conditioning_VAR in Model (3) with High_FSALE, High_OPCF, and Clean_OPIN, respectively.
T301 42097-42585 Sentence denotes Here, High_FSALE is an indicator variable that equals one if the firm’s foreign sales are higher than or equal to the upper quartile value and zero otherwise; High_OPCF is an indicator variable that equals one if the ratio of the firm’s operating cash flow to total assets is higher than or equal to the upper quartile value and zero otherwise; and Clean_OPIN is an indicator variable that equals one if the firm received a clean audit opinion for its financial report and zero otherwise.
T302 42586-42678 Sentence denotes Table 12 shows the regression results of the moderate effects of firm-level characteristics.
T303 42679-43038 Sentence denotes We find that the coefficients of CIPHT × High_FSALE, CIPHT × High_OPCF, and CIPHT × Clean_OPIN are all positive and significant, which is consistent with our prediction that geographical diversification, cash flow efficiency, and reporting quality could mitigate the negative effect of continued increasing provincial public health threats on market reaction.
T304 43040-43044 Sentence denotes 6.4.
T305 43045-43114 Sentence denotes The Impact of Volatility of Provincial Increase in New COVID-19 Cases
T306 43115-43389 Sentence denotes As a final robustness check, we examine whether our results are influenced by the volatility of provincial increase in new confirmed COVID-19 cases because high volatility of the number changing in the new confirmed cases may affect the extent of investors’ risk assessment.
T307 43390-43479 Sentence denotes To tackle this concern, we substitute Conditioning_VAR in Model (3) with High_Volatility.
T308 43480-43683 Sentence denotes Here High_Volatility is an indicator variable that equals one if the six-day standard deviation of the new confirmed COVID-19 cases is higher than or equal to the upper quartile value and zero otherwise.
T309 43684-43795 Sentence denotes Table 13 shows the regression results on the moderate effect of volatility of the new confirmed COVID-19 cases.
T310 43796-44000 Sentence denotes We find that the coefficients of CIPHT × High_Volatility are all statistically insignificant, suggesting that our results are not driven by the fluctuations in the number of new confirmed cases over time.
T311 44002-44004 Sentence denotes 7.
T312 44005-44031 Sentence denotes Conclusions and Discussion
T313 44032-44139 Sentence denotes The issue of the economic outcomes of the COVID-19 outbreak has gained considerable attention in the world.
T314 44140-44280 Sentence denotes However, how exactly the continued increasing provincial cases of COVID-19 affects the firms’ market performance is not entirely understood.
T315 44281-44421 Sentence denotes In this paper, we examine whether and how the continued increase of public health threats negatively affects the cumulative abnormal return.
T316 44422-44694 Sentence denotes Using the 178,805 firm-day observations from Chinese listed firms from 10 January to 31 March 2020, we find that the accumulative abnormal return is significantly lower among firms located in the provinces where face the continued increase of new confirmed COVID-19 cases.
T317 44695-44756 Sentence denotes The relations remain constant after several robustness tests.
T318 44757-44905 Sentence denotes These findings suggest that investors concern about the potential risk when firms are located in the provinces with higher threats to public health.
T319 44906-45097 Sentence denotes In addition, we find that the relation between increasing provincial public health threat and firms’ abnormal return is affected by the regional information accessibility and economic growth.
T320 45098-45184 Sentence denotes Moreover, we conduct several additional tests to ensure the robustness of our results.
T321 45185-45322 Sentence denotes First, we find that the continued decrease of provincial public health threats is positively related to the accumulative abnormal return.
T322 45323-45513 Sentence denotes Second, we find that the community lockdown has a negative moderating effect on the negative relationship between continued increasing public health threats and accumulative abnormal return.
T323 45514-45701 Sentence denotes Third, we find that the negative effect of increasing threats is weaker for firms with a higher level of geographical diversification, operating cash flow, and with a clean audit opinion.
T324 45702-45816 Sentence denotes Fourth, we find that our results are not driven by the fluctuations in the number of new confirmed COVID-19 cases.
T325 45817-45874 Sentence denotes This study contributes to the literature in many aspects.
T326 45875-45979 Sentence denotes First, we add to the growing literature on the role that public health threats play in market reactions.
T327 45980-46345 Sentence denotes Prior studies contend that the firms in heavy-polluting industries have a negative market reaction to the passage of the Environmental Protection Tax Law [39]; negative cumulative abnormal returns occur during short windows around pollution events [38]; and insurance firms have higher abnormal returns around the event window in most of the hurricane hazards [37].
T328 46346-46430 Sentence denotes These findings suggest that the increase in public health risks affects the markets.
T329 46431-46641 Sentence denotes We add to this body of research by showing that the continued increase of COVID-19 cases at the provincial level will negatively affect the firm’s market performance by enhancing the investors’ risk assessment.
T330 46642-46854 Sentence denotes Second, we also contribute to the literature on risk assessment on COVID-19 and provide evidence that continued increasing regional public health threats are an essential determinant of local firms’ share prices.
T331 46855-46979 Sentence denotes This study answers Zhang and Shaw’s [1] call for multi-disciplinary research incorporating public health and socioeconomics.
T332 46980-47158 Sentence denotes Our findings shed light on this observation and suggest that the provincial-level threats of public health play a substantial role in determining local firms’ market performance.
T333 47159-47402 Sentence denotes Moreover, compared to the prior COVID-19 related studies based on the evidence from China’s market [3], this study uses a much larger sample to test the effect of continued increasing public health threats, which enhance the statistical power.
T334 47403-47542 Sentence denotes Considering the limitations of the cross-country setting [2,4,7,24], this study supplements prior studies by focusing on one single market.
T335 47543-47638 Sentence denotes Third, we add the literature on the moderate effects of macro factors on public health threats.
T336 47639-47811 Sentence denotes This study shows that provincial-based continued increased cases of COVID-19 affect investors’ expectations of the local firms’ exposure to increased risk of public health.
T337 47812-47974 Sentence denotes Moreover, our cross-sectional analyses show that investors’ risk assessment could be driven by the provincial level of information asymmetry and economic outlook.
T338 47975-48140 Sentence denotes Fourth, we extend the literature on information disclosure and show the usefulness of the timely disclosure on disease information from the governmental institution.
T339 48141-48209 Sentence denotes It will be helpful to the investor for facilitating decision making.
T340 48210-48347 Sentence denotes This study provides evidence that the continued increase of provincial new confirmed COVID-19 cases is an essential signal for investors.
T341 48348-48407 Sentence denotes This study has several implications for interested parties.
T342 48408-48565 Sentence denotes Investors should realize the usefulness of the non-financial information and pay more attention to the detailed information related to public health threats.
T343 48566-48772 Sentence denotes Companies need to enhance the level of geographical diversification, operating cash flow, and reporting quality for mitigating the negative effect of local public health threats on their market performance.
T344 48773-49059 Sentence denotes For the government and policymakers, they should understand the important moderate effects of the local environment on the negative effect of public health threats and take the balance of the cross-provinces development from the perspectives of the information technology and economics.
T345 49060-49136 Sentence denotes Our study has several limitations that could be addressed by future studies.
T346 49137-49283 Sentence denotes First, we add several cross-sectional tests, the instrumental variables approach, and many control variables to mitigate the endogeneity concerns.
T347 49284-49365 Sentence denotes However, it is difficult to rule out all confounding factors using archival data.
T348 49366-49474 Sentence denotes Second, the abnormal return measures are inherently limited and may not entirely represent abnormal returns.
T349 49475-49670 Sentence denotes Third, given that the institutional characteristics of China are different from other countries, the negative effect of continued increasing public health threats may not exist in other settings.
T350 49671-50035 Sentence denotes Fourth, considering the difficulty of the measurement for the regional public health threats, information accessibility, and economic growth (e.g., we fail to measure the quality of news information), we merely provide some testable proxies to represent these concepts and show that they relate to the investors’ risk assessment on continued public health threats.
T351 50037-50052 Sentence denotes Acknowledgments
T352 50053-50151 Sentence denotes I am grateful to the editor and anonymous reviewers for their insightful comments and suggestions.
T353 50152-50275 Sentence denotes Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
T354 50277-50284 Sentence denotes Funding
T355 50285-50328 Sentence denotes This research received no external funding.
T356 50330-50351 Sentence denotes Conflicts of Interest
T357 50352-50396 Sentence denotes The author declares no conflict of interest.
T358 50398-50408 Sentence denotes Appendix A
T359 50409-50440 Sentence denotes Table A1 Variable definitions.
T360 50441-50463 Sentence denotes Variables Definitions
T361 50464-50562 Sentence denotes CAR [−1, 1] The firm’s three-day cumulative abnormal return [−1, 1] computed by the market model.
T362 50563-50672 Sentence denotes The market model is estimated over the period [−200, −60] relative to the current day with the market return;
T363 50673-50770 Sentence denotes CAR [−2, 2] The firm’s five-day cumulative abnormal return [−2, 2] computed by the market model.
T364 50771-50880 Sentence denotes The market model is estimated over the period [−200, −60] relative to the current day with the market return;
T365 50881-51125 Sentence denotes CDPHT Continued decreasing public health threats that is measured as an indicator variable that equals one if there have not been any provincial new COVID-19 cases for at least six consecutive days including the current day and zero otherwise;
T366 51126-51169 Sentence denotes CEO_AGE The age of the firm’s CEO in 2019;
T367 51170-51246 Sentence denotes CEO_COM The ratio of the firm’s CEO compensation to the net income in 2019;
T368 51247-51380 Sentence denotes CEO_DUA Indicator variable that equals one if the firm’s CEO holds a concurrent post in other work units in 2019 and zero otherwise;
T369 51381-51482 Sentence denotes CEO_TEN The tenure of the firm’s CEO that is defined as days of CEO’s tenure in 2019 divided by 365;
T370 51483-51719 Sentence denotes CIPHT Continued increasing public health threats that is measured as an indicator variable that equals one if there have been provincial new COVID-19 cases for at least six consecutive days including the current day and zero otherwise;
T371 51720-51984 Sentence denotes CIPHT2 Alternative variable for continued increasing public health threats that is measured as an indicator variable that equals one if there have been provincial new COVID-19 cases for at least seven consecutive days including the current day and zero otherwise;
T372 51985-52248 Sentence denotes CIPHT3 Alternative variable for continued increasing public health threats that is measured as an indicator variable that equals one if there have been provincial new COVID-19 cases for at least five consecutive days including the current day and zero otherwise;
T373 52249-52391 Sentence denotes Clean_OPIN Indicator variable that equals one if the firm received a clean audit opinion for its financial report in 2019 and zero otherwise;
T374 52392-52486 Sentence denotes CURR The current ratio in 2019, measured as a ratio of current assets to current liabilities;
T375 52487-52604 Sentence denotes EMIGRANT The six-day mean value (t-5 to t) of the ratio of the daily provincial emigrants to national emigrants (%);
T376 52605-52785 Sentence denotes High_EMR Indicator variable that equals one if the provincial employment rate in the urban area (%) in 2019 is higher than or equal to the upper quartile value and zero otherwise;
T377 52786-52941 Sentence denotes High_FSALE Indicator variable that equals one if the firm’s foreign sales in 2019 are higher than or equal to the upper quartile value and zero otherwise;
T378 52942-53179 Sentence denotes High_GRP Indicator variable that equals one if the provincial ratio of the gross regional product (100 million yuan) to resident population (10,000 persons) in 2019 is higher than or equal to the upper quartile value and zero otherwise;
T379 53180-53353 Sentence denotes High_MED Indicator variable that equals one if the provincial TV coverage rate of population in 2019 is higher than or equal to the upper quartile value and zero otherwise;
T380 53354-53587 Sentence denotes High_MOB Indicator variable that equals one if the provincial ratio of flow accessed to mobile internet (100 GB) to resident population (10,000 persons) in 2019 is higher than or equal to the upper quartile value and zero otherwise;
T381 53588-53776 Sentence denotes High_OPCF Indicator variable that equals one if the ratio of the firm’s operating cash flow to total assets in 2019 is higher than or equal to the upper quartile value and zero otherwise;
T382 53777-53972 Sentence denotes High_URB Indicator variable that equals one if the provincial ratio of urban population to the resident population in 2019 is higher than or equal to the upper quartile value and zero otherwise;
T383 53973-54177 Sentence denotes High_Volatility Indicator variable that equals one if the six-day standard deviation (t-5 to t) of the new confirmed COVID-19 cases is higher than or equal to the upper quartile value and zero otherwise;
T384 54178-54419 Sentence denotes High_WEB Indicator variable that equals one if the provincial ratio of the number of websites per 100 enterprises (unit) to resident population (10,000 persons) in 2019 is higher than or equal to the upper quartile value and zero otherwise;
T385 54420-54544 Sentence denotes IMMIGRANT The six-day mean value (t-5 to t) of the ratio of the daily provincial immigrants to the national immigrants (%);
T386 54545-54614 Sentence denotes LEV The leverage ratio of total liabilities to total assets in 2019;
T387 54615-54711 Sentence denotes LOSS Indicator variable that equals one if the firm suffered a loss in 2019 and zero otherwise;
T388 54712-54786 Sentence denotes OPCF The ratio of the firm’s operating cash flow to total assets in 2019;
T389 54787-54944 Sentence denotes POST_Lockdown Indicator variable that equals one if the firm is in periods after implementing the "closed community management" measures and zero otherwise;
T390 54945-55118 Sentence denotes PRO_CASE The six-day mean value (t-5 to t) of the provincial ratio of the daily accumulated confirmed COVID-19 cases (unit) to resident population (10,000 persons) in 2019;
T391 55119-55419 Sentence denotes Pseudo_CIPHT Pseudo continued increasing public health threats that is measured as an indicator variable that equals one if the firm located in the province where faced a continued increase of new COVID-19 cases in the last five days, but no new cases occurred in the current day and zero otherwise;
T392 55420-55468 Sentence denotes R&D The ratio of R&D expenses to sales in 2019;
T393 55469-55550 Sentence denotes ROA Return on assets in 2019, measured as a ratio of net income to total assets;
T394 55551-55603 Sentence denotes SIZE Natural logarithm of total assets in 2019; and
T395 55604-55691 Sentence denotes TURN The asset turnover ratio in 2019, measured as the ratio of sales to total assets.
T396 55693-55703 Sentence denotes Appendix B
T397 55704-55772 Sentence denotes Table A2 Distribution of firm-day observations by province and day.
T398 55773-55781 Sentence denotes Panel A:
T399 55782-55867 Sentence denotes Distribution of Firm-Day Observations by Province from 10 January to 28 February 2020
T400 55868-55891 Sentence denotes CIPHT = 1 Full sample
T401 55892-56020 Sentence denotes 1/21 22 23 2/03 04 05 06 07 10 11 12 13 14 17 18 19 20 21 24 25 26 27 28 1/10–2/28
T402 56021-56133 Sentence denotes Anhui 0 0 0 92 92 92 92 92 92 92 92 92 92 92 93 93 93 93 0 0 0 0 0 2769
T403 56134-56262 Sentence denotes Beijing 0 0 0 376 377 377 377 377 377 377 378 378 378 378 378 378 378 378 0 0 0 0 0 11,325
T404 56263-56385 Sentence denotes Chongqing 0 0 0 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 45 0 0 0 0 1350
T405 56386-56509 Sentence denotes Fujian 0 0 0 126 126 126 126 126 126 126 126 126 126 126 126 0 0 0 0 0 0 0 0 3780
T406 56510-56610 Sentence denotes Gansu 0 0 0 24 24 24 24 24 24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 720
T407 56611-56745 Sentence denotes Guangdong 0 0 0 579 580 580 580 580 580 580 580 580 580 581 581 581 581 581 582 0 0 0 0 17,376
T408 56746-56855 Sentence denotes Guangxi 0 0 0 30 30 30 30 30 30 30 0 0 0 0 30 30 30 30 0 0 0 0 0 900
T409 56856-56962 Sentence denotes Guizhou 0 0 0 25 25 25 25 25 25 25 25 25 25 0 0 0 0 0 0 0 0 0 0 750
T410 56963-57068 Sentence denotes Hainan 0 0 0 23 23 23 23 23 23 23 23 0 0 0 0 0 0 0 0 0 0 0 0 690
T411 57069-57181 Sentence denotes Hebei 0 0 0 52 52 52 52 52 52 52 52 52 52 52 52 52 52 52 0 0 0 0 0 1560
T412 57182-57300 Sentence denotes Heilongjiang 0 0 0 28 28 28 28 28 28 28 28 28 28 28 28 28 28 0 0 0 0 0 0 840
T413 57301-57414 Sentence denotes Henan 0 0 0 71 71 71 71 71 71 71 71 71 71 71 71 71 71 71 0 0 0 0 0 2122
T414 57415-57533 Sentence denotes Hubei 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 79 2368
T415 57534-57629 Sentence denotes Hunan 0 0 0 92 92 92 92 92 92 92 92 92 92 92 92 92 92 92 0 0 0 0 0 2751
T416 57630-57757 Sentence denotes Jiangsu 0 0 0 383 384 384 384 384 384 384 384 384 384 384 384 0 0 0 0 0 0 0 0 11,500
T417 57758-57871 Sentence denotes Jiangxi 0 0 0 41 41 41 41 41 41 41 41 41 41 41 40 41 0 0 0 0 0 0 0 1229
T418 57872-57975 Sentence denotes Jilin 0 0 0 0 0 29 29 29 29 29 29 29 29 0 0 0 0 0 0 0 0 0 0 865
T419 57976-58082 Sentence denotes Liaoning 0 0 0 66 66 66 66 66 66 66 0 0 0 0 0 0 0 0 0 0 0 0 0 1980
T420 58083-58185 Sentence denotes Neimenggu 0 0 0 20 20 20 20 20 0 0 0 0 0 20 20 0 0 0 0 0 0 0 0 600
T421 58186-58295 Sentence denotes Ningxia 0 0 0 14 0 0 0 0 14 14 14 14 14 0 0 0 0 0 0 0 0 0 0 420
T422 58296-58377 Sentence denotes Qinghai 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 299
T423 58378-58486 Sentence denotes Shaanxi 0 0 0 46 46 47 47 47 47 47 47 47 47 47 0 0 0 0 0 0 0 0 0 1395
T424 58487-58618 Sentence denotes Shandong 0 0 0 185 185 185 185 185 185 185 185 185 185 185 185 185 185 185 0 0 0 0 0 5553
T425 58619-58738 Sentence denotes Shanghai 0 0 0 312 312 312 312 312 312 313 314 314 314 314 0 0 0 0 0 0 0 0 0 9393
T426 58739-58827 Sentence denotes Shanxi 0 0 0 31 31 31 31 31 31 31 31 0 0 0 0 0 0 0 0 0 0 0 0 930
T427 58828-58956 Sentence denotes Sichuan 0 0 0 115 115 115 115 115 115 115 115 115 115 115 115 115 115 115 0 0 0 0 0 3445
T428 58957-59069 Sentence denotes Tianjin 0 0 0 42 42 42 42 42 42 42 42 42 42 42 42 42 42 42 0 0 0 0 0 1262
T429 59070-59164 Sentence denotes Xinjiang 0 0 0 45 45 45 45 45 45 45 45 45 45 45 0 0 0 0 0 0 0 0 0 1347
T430 59165-59245 Sentence denotes Xizang 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 270
T431 59246-59355 Sentence denotes Yunnan 0 0 0 31 31 31 31 31 31 31 30 30 31 31 31 0 0 0 0 0 0 0 0 928
T432 59356-59491 Sentence denotes Zhejiang 0 0 0 403 403 403 403 403 403 403 403 403 403 403 403 403 403 403 0 0 0 0 0 12,075
T433 59492-59500 Sentence denotes Panel B:
T434 59501-59580 Sentence denotes Distribution of Firm-Day Observations by Province from 2 March to 31 March 2020
T435 59581-59605 Sentence denotes CIPHT = 1 Full sample
T436 59606-59728 Sentence denotes 3/02 03 04 05 06 09 10 11 12 13 16 17 18 19 20 23 24 25 26 27 30 31 3/02–3/31
T437 59729-59829 Sentence denotes Anhui 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2047
T438 59830-59952 Sentence denotes Beijing 0 0 0 0 0 0 0 0 0 0 0 385 384 383 384 385 385 385 385 385 384 0 8435
T439 59953-60056 Sentence denotes Chongqing 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 989
T440 60057-60170 Sentence denotes Fujian 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 128 128 128 128 128 128 2792
T441 60171-60270 Sentence denotes Gansu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 527
T442 60271-60395 Sentence denotes Guangdong 0 0 0 0 0 0 0 0 0 0 0 0 0 587 588 588 589 589 589 589 590 591 12,893
T443 60396-60497 Sentence denotes Guangxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 650
T444 60498-60599 Sentence denotes Guizhou 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 550
T445 60600-60700 Sentence denotes Hainan 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 505
T446 60701-60801 Sentence denotes Hebei 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1144
T447 60802-60908 Sentence denotes Heilongjiang 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 595
T448 60909-61009 Sentence denotes Henan 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1562
T449 61010-61122 Sentence denotes Hubei 79 79 79 79 79 79 79 79 79 79 79 79 0 0 0 0 0 0 0 0 0 0 1730
T450 61123-61201 Sentence denotes Hunan 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2032
T451 61202-61304 Sentence denotes Jiangsu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8494
T452 61305-61406 Sentence denotes Jiangxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 892
T453 61407-61506 Sentence denotes Jilin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 638
T454 61507-61611 Sentence denotes Liaoning 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 66 1440
T455 61612-61717 Sentence denotes Neimenggu 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 20 20 440
T456 61718-61819 Sentence denotes Ningxia 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 308
T457 61820-61921 Sentence denotes Qinghai 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 220
T458 61922-62024 Sentence denotes Shaanxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1034
T459 62025-62130 Sentence denotes Shandong 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 187 0 0 0 0 0 4117
T460 62131-62256 Sentence denotes Shanghai 0 0 0 0 0 0 0 0 0 0 0 319 319 319 318 318 318 317 318 318 318 318 6996
T461 62257-62335 Sentence denotes Shanxi 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 682
T462 62336-62438 Sentence denotes Sichuan 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2529
T463 62439-62541 Sentence denotes Tianjin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 44 0 966
T464 62542-62622 Sentence denotes Xinjiang 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 988
T465 62623-62701 Sentence denotes Xizang 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 198
T466 62702-62802 Sentence denotes Yunnan 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 682
T467 62803-62918 Sentence denotes Zhejiang 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 406 406 406 407 407 408 0 8938
T468 62919-62924 Sentence denotes Note:
T469 62925-63017 Sentence denotes Values in bold are in periods after implementing the “closed community management” measures.
T470 63019-63064 Sentence denotes Table 1 Sample restriction and distribution.
T471 63065-63073 Sentence denotes Panel A:
T472 63074-63092 Sentence denotes Sample Restriction
T473 63093-63110 Sentence denotes Firms Firm-Days
T474 63111-63130 Sentence denotes Description Obs.
T475 63133-63137 Sentence denotes Obs.
T476 63138-63226 Sentence denotes Observations from 10 January to 31 March 2020 with CSMAR and RESSET data 3635 187,030
T477 63227-63266 Sentence denotes Less: financial companies −108 −5522
T478 63267-63322 Sentence denotes Less: missing data for measuring variables −52 −2703
T479 63323-63351 Sentence denotes Final sample 3475 178,805
T480 63352-63360 Sentence denotes Panel B:
T481 63361-63382 Sentence denotes Distribution by Month
T482 63383-63416 Sentence denotes Firm-Days CIPHT = 0 CIPHT = 1
T483 63417-63429 Sentence denotes Month Obs.
T484 63432-63436 Sentence denotes Obs.
T485 63439-63443 Sentence denotes Obs.
T486 63444-63472 Sentence denotes January 34,147 33,910 237
T487 63473-63505 Sentence denotes February 68,645 21,675 46,970
T488 63506-63535 Sentence denotes March 76,013 58,875 17,138
T489 63536-63567 Sentence denotes Total 178,805 114,460 64,345
T490 63568-63576 Sentence denotes Panel C:
T491 63577-63601 Sentence denotes Distribution by Industry
T492 63602-63635 Sentence denotes Firm-Days CIPHT = 0 CIPHT = 1
T493 63636-63651 Sentence denotes Industry Obs.
T494 63654-63658 Sentence denotes Obs.
T495 63661-63665 Sentence denotes Obs.
T496 63666-63703 Sentence denotes Accommodation and food 468 300 168
T497 63704-63733 Sentence denotes Comprehensive 1092 706 386
T498 63734-63764 Sentence denotes Construction 4775 2787 1988
T499 63765-63817 Sentence denotes Culture, sports, and entertainment 2953 1808 1145
T500 63818-63842 Sentence denotes Education 416 236 180
T501 63843-63908 Sentence denotes Farming, forestry, animal husbandry, and fishery 2027 1464 563
T502 63909-63946 Sentence denotes Health and social work 572 353 219
T503 63947-64038 Sentence denotes Information transmission, software, and information technology services 14,413 8582 5831
T504 64039-64086 Sentence denotes Leasing and business services 2688 1514 1174
T505 64087-64125 Sentence denotes Manufacturing 115,676 74,983 40,693
T506 64126-64150 Sentence denotes Mining 3578 2516 1062
T507 64151-64227 Sentence denotes Production and supply of electricity, heat, gas, and water 5344 3573 1771
T508 64228-64257 Sentence denotes Real estate 5903 3559 2344
T509 64258-64315 Sentence denotes Resident services, repair, and other services 52 27 25
T510 64316-64376 Sentence denotes Scientific research and technical services 2798 1747 1051
T511 64377-64442 Sentence denotes Transportation, warehousing and postal services 5248 3405 1843
T512 64443-64525 Sentence denotes Water conservancy, environment, and public institution management 2648 1769 879
T513 64526-64570 Sentence denotes Wholesale and retail trade 8154 5131 3023
T514 64571-64602 Sentence denotes Total 178,805 114,460 64,345
T515 64603-64608 Sentence denotes Note:
T516 64609-64687 Sentence denotes This table presents the sample restriction and distribution by month/industry.
T517 64688-64776 Sentence denotes Panel A presents the sample restriction for the period from 10 January to 31 March 2020.
T518 64777-64853 Sentence denotes Panel B presents the descriptive statistics of the sample over three months.
T519 64854-64991 Sentence denotes Panel C presents an industry breakdown of the sample based on the China Securities Regulatory Commission industry classification in 2012.
T520 64992-65057 Sentence denotes See Appendix A for definitions and measurements of the variables.
T521 65058-65090 Sentence denotes Table 2 Descriptive statistics.
T522 65091-65099 Sentence denotes Panel A:
T523 65100-65122 Sentence denotes Descriptive Statistics
T524 65123-65148 Sentence denotes Full sample (N = 178,805)
T525 65149-65171 Sentence denotes Variable Mean Std.
T526 65172-65176 Sentence denotes Dev.
T527 65179-65195 Sentence denotes Q1 Median Q3
T528 65196-65244 Sentence denotes CAR [−1, 1] 0.000 0.046 −0.025 −0.004 0.020
T529 65245-65293 Sentence denotes CAR [−2, 2] 0.000 0.061 −0.034 −0.005 0.027
T530 65294-65334 Sentence denotes CIPHT 0.360 0.480 0.000 0.000 1.000
T531 65335-65378 Sentence denotes PRO_CASE 0.265 1.327 0.034 0.079 0.147
T532 65379-65422 Sentence denotes SIZE 22.280 1.359 21.343 22.096 23.018
T533 65423-65461 Sentence denotes ROA 0.013 0.652 0.008 0.025 0.053
T534 65462-65501 Sentence denotes CURR 2.480 3.159 1.152 1.641 2.666
T535 65502-65541 Sentence denotes R&D 0.249 12.999 0.000 0.000 0.000
T536 65542-65581 Sentence denotes LOSS 0.076 0.266 0.000 0.000 0.000
T537 65582-65620 Sentence denotes LEV 0.439 0.571 0.265 0.414 0.571
T538 65621-65660 Sentence denotes OPCF 0.035 0.108 0.002 0.026 0.064
T539 65661-65700 Sentence denotes TURN 0.463 0.886 0.156 0.341 0.564
T540 65701-65747 Sentence denotes CEO_AGE 52.191 5.851 49.000 52.500 56.000
T541 65748-65790 Sentence denotes CEO_COM 0.025 0.405 0.002 0.006 0.014
T542 65791-65833 Sentence denotes CEO_TEN 4.774 3.498 2.148 4.156 6.405
T543 65834-65876 Sentence denotes CEO_DUA 0.680 0.395 0.500 1.000 1.000
T544 65877-65885 Sentence denotes Panel B:
T545 65886-65906 Sentence denotes Mean Difference Test
T546 65907-65937 Sentence denotes CIPHT = 0 vs. CIPHT = 1 (Mean)
T547 65938-65992 Sentence denotes Variable CIPHT = 0 CIPHT = 1 Diff. t-statistic
T548 65993-66037 Sentence denotes CAR [−1, 1] 0.000 −0.001 0.001 3.26 ***
T549 66038-66082 Sentence denotes CAR [−2, 2] 0.000 −0.001 0.001 3.99 ***
T550 66083-66110 Sentence denotes CIPHT 0.000 1.000 −1.000
T551 66111-66154 Sentence denotes PRO_CASE 0.158 0.455 −0.297 −45.65 ***
T552 66155-66195 Sentence denotes SIZE 22.274 22.292 −0.018 −2.69 ***
T553 66196-66226 Sentence denotes ROA 0.013 0.013 0.001 0.22
T554 66227-66258 Sentence denotes CURR 2.483 2.476 0.007 0.43
T555 66259-66294 Sentence denotes R&D 0.318 0.125 0.193 3.01 ***
T556 66295-66331 Sentence denotes LOSS 0.078 0.074 0.004 3.43 ***
T557 66332-66365 Sentence denotes LEV 0.441 0.436 0.005 1.82 *
T558 66366-66398 Sentence denotes OPCF 0.035 0.035 0.000 −0.25
T559 66399-66432 Sentence denotes TURN 0.463 0.464 −0.002 −0.38
T560 66433-66474 Sentence denotes CEO_AGE 52.243 52.097 0.146 5.07 ***
T561 66475-66516 Sentence denotes CEO_COM 0.022 0.029 −0.006 −3.13 ***
T562 66517-66558 Sentence denotes CEO_TEN 4.750 4.815 −0.065 −3.74 ***
T563 66559-66599 Sentence denotes CEO_DUA 0.678 0.683 −0.004 −2.14 **
T564 66600-66688 Sentence denotes Note: *, **, *** indicate significance at the 0.10, 0.05, and 0.01 levels, respectively.
T565 66689-66754 Sentence denotes See Appendix A for definitions and measurements of the variables.
T566 66755-66783 Sentence denotes Table 3 Correlation matrix.
T567 66784-66792 Sentence denotes Panel A:
T568 66793-66834 Sentence denotes Correlation Variables CAR [ −1, 1] to R&D
T569 66835-66864 Sentence denotes 1 2 3 4 5 6 7 8
T570 66865-66939 Sentence denotes 1 CAR [−1, 1] 0.761 0.000 −0.010 0.022 −0.016 −0.017 −0.007
T571 66940-67014 Sentence denotes 2 CAR [−2, 2] 0.792 0.001 −0.006 0.024 −0.019 −0.021 −0.008
T572 67015-67082 Sentence denotes 3 CIPHT −0.008 −0.009 0.267 0.002 0.011 0.012 0.017
T573 67083-67152 Sentence denotes 4 PRO_CASE 0.010 0.013 0.107 0.008 0.025 0.032 0.022
T574 67153-67220 Sentence denotes 5 SIZE 0.004 0.005 0.006 −0.008 −0.323 −0.440 0.174
T575 67221-67285 Sentence denotes 6 ROA −0.002 −0.003 −0.001 0.003 0.065 0.398 −0.117
T576 67286-67356 Sentence denotes 7 CURR −0.011 −0.015 −0.001 −0.005 −0.271 0.025 −0.063
T577 67357-67421 Sentence denotes 8 R&D 0.006 0.007 −0.007 −0.003 0.014 0.003 −0.006
T578 67422-67498 Sentence denotes 9 LOSS −0.001 −0.002 −0.008 0.012 −0.065 −0.144 −0.009 −0.004
T579 67499-67571 Sentence denotes 10 LEV 0.004 0.005 −0.004 −0.003 0.103 −0.275 −0.208 0.000
T580 67572-67649 Sentence denotes 11 OPCF −0.012 −0.016 0.001 −0.031 −0.090 0.075 0.066 −0.006
T581 67650-67725 Sentence denotes 12 TURN 0.000 0.000 0.001 −0.015 −0.182 −0.046 −0.014 −0.010
T582 67726-67802 Sentence denotes 13 CEO_AGE 0.002 0.003 −0.012 −0.019 0.107 0.025 −0.003 0.013
T583 67803-67876 Sentence denotes 14 CEO_COM 0.001 0.001 0.007 0.007 0.024 0.000 −0.013 0.000
T584 67877-67956 Sentence denotes 15 CEO_TEN 0.006 0.008 0.009 −0.004 0.062 −0.016 −0.015 −0.015
T585 67957-68037 Sentence denotes 16 CEO_DUA −0.005 −0.006 0.005 −0.038 0.030 0.035 0.024 −0.007
T586 68038-68046 Sentence denotes Panel B:
T587 68047-68084 Sentence denotes Correlation Variables LOSS to CEO_DUA
T588 68085-68121 Sentence denotes 9 10 12 11 13 14 15 16
T589 68122-68204 Sentence denotes 1 CAR [−1, 1] −0.005 0.019 −0.017 −0.009 0.008 −0.002 0.007 −0.006
T590 68205-68286 Sentence denotes 2 CAR [−2, 2] −0.006 0.024 −0.023 −0.011 0.009 0.001 0.009 −0.007
T591 68287-68359 Sentence denotes 3 CIPHT −0.008 0.000 0.001 0.001 −0.009 0.016 0.009 0.006
T592 68360-68438 Sentence denotes 4 PRO_CASE −0.006 −0.014 0.021 0.004 −0.009 0.013 0.009 0.023
T593 68439-68514 Sentence denotes 5 SIZE −0.052 0.465 −0.159 −0.325 0.089 −0.274 0.042 0.002
T594 68515-68589 Sentence denotes 6 ROA −0.460 −0.426 0.338 0.482 0.056 −0.125 0.021 0.081
T595 68590-68664 Sentence denotes 7 CURR −0.065 −0.815 0.183 0.113 0.036 0.077 0.047 0.040
T596 68665-68737 Sentence denotes 8 R&D 0.003 0.056 −0.109 −0.165 0.060 0.018 0.083 0.022
T597 68738-68809 Sentence denotes 9 LOSS 0.071 −0.069 −0.038 −0.066 −0.460 −0.057 −0.047
T598 68810-68881 Sentence denotes 10 LEV 0.080 −0.285 −0.126 −0.045 −0.059 −0.063 −0.045
T599 68882-68952 Sentence denotes 11 OPCF −0.022 −0.132 0.206 0.026 −0.077 −0.014 0.042
T600 68953-69022 Sentence denotes 12 TURN 0.024 0.116 0.142 −0.006 −0.175 −0.046 0.032
T601 69023-69095 Sentence denotes 13 CEO_AGE −0.065 −0.066 −0.012 −0.046 0.004 0.269 0.066
T602 69096-69168 Sentence denotes 14 CEO_COM −0.038 0.009 −0.010 −0.018 0.007 0.075 −0.002
T603 69169-69242 Sentence denotes 15 CEO_TEN −0.049 −0.037 −0.048 −0.062 0.283 −0.003 0.116
T604 69243-69314 Sentence denotes 16 CEO_DUA −0.043 −0.026 0.008 −0.015 0.067 0.012 0.101
T605 69315-69320 Sentence denotes Note:
T606 69321-69377 Sentence denotes Correlations are based on 178,805 firm-day observations.
T607 69378-69440 Sentence denotes Pearson (Spearman) correlations in the lower (upper) diagonal.
T608 69441-69532 Sentence denotes Correlation coefficients in bold are statistically significant at the 0.10 level or better.
T609 69533-69598 Sentence denotes See Appendix A for definitions and measurements of the variables.
T610 69599-69684 Sentence denotes Table 4 Continued increasing public health threats and accumulative abnormal return.
T611 69685-69761 Sentence denotes CAR [−1, 1] CAR [−1, 1] CAR [−1, 1] CAR [−2, 2] CAR [−2, 2] CAR [−2, 2]
T612 69762-69790 Sentence denotes (A) (B) (C) (D) (E) (F)
T613 69791-69863 Sentence denotes CIPHT −0.000 * −0.001 ** −0.001 ** −0.001 ** −0.001 *** −0.001 ***
T614 69864-69922 Sentence denotes (−1.716) (−2.375) (−2.372) (−2.033) (−2.868) (−2.865)
T615 69923-69977 Sentence denotes PRO_CASE 0.000 *** 0.000 *** 0.001 *** 0.001 ***
T616 69978-70013 Sentence denotes (3.066) (3.065) (3.885) (3.882)
T617 70014-70052 Sentence denotes SIZE −0.000 −0.000 −0.000 −0.000
T618 70053-70092 Sentence denotes (−0.386) (−0.587) (−0.728) (−0.978)
T619 70093-70130 Sentence denotes ROA −0.000 −0.000 −0.000 −0.000
T620 70131-70170 Sentence denotes (−1.118) (−0.986) (−1.365) (−1.196)
T621 70171-70225 Sentence denotes CURR −0.000 *** −0.000 *** −0.000 *** −0.000 ***
T622 70226-70265 Sentence denotes (−3.731) (−3.670) (−4.843) (−4.764)
T623 70266-70313 Sentence denotes R&D 0.000 ** 0.000 ** 0.000 *** 0.000 ***
T624 70314-70349 Sentence denotes (2.473) (2.519) (3.062) (3.122)
T625 70350-70393 Sentence denotes LOSS −0.001 −0.001 −0.001 ** −0.001 *
T626 70394-70433 Sentence denotes (−1.622) (−1.549) (−1.993) (−1.902)
T627 70434-70471 Sentence denotes LEV −0.000 −0.000 −0.000 −0.000
T628 70472-70511 Sentence denotes (−1.133) (−1.010) (−1.284) (−1.132)
T629 70512-70566 Sentence denotes OPCF −0.004 *** −0.004 *** −0.008 *** −0.008 ***
T630 70567-70606 Sentence denotes (−4.259) (−4.128) (−5.722) (−5.553)
T631 70607-70641 Sentence denotes TURN 0.000 0.000 0.000 0.000
T632 70642-70677 Sentence denotes (0.757) (0.865) (0.992) (1.130)
T633 70678-70703 Sentence denotes CEO_AGE 0.000 0.000
T634 70704-70722 Sentence denotes (0.135) (0.079)
T635 70723-70748 Sentence denotes CEO_COM 0.000 0.000
T636 70749-70767 Sentence denotes (0.239) (0.300)
T637 70768-70801 Sentence denotes CEO_TEN 0.000 *** 0.000 ***
T638 70802-70820 Sentence denotes (2.742) (3.556)
T639 70821-70848 Sentence denotes CEO_DUA −0.000 −0.001
T640 70849-70869 Sentence denotes (−1.253) (−1.575)
T641 70870-70922 Sentence denotes Constant −0.001 0.002 0.002 −0.002 0.003 0.004
T642 70923-70977 Sentence denotes (−0.336) (0.404) (0.515) (−0.484) (0.561) (0.722)
T643 70978-71015 Sentence denotes Week FE Yes Yes Yes Yes Yes Yes
T644 71016-71057 Sentence denotes Industry FE Yes Yes Yes Yes Yes Yes
T645 71058-71099 Sentence denotes Province FE Yes Yes Yes Yes Yes Yes
T646 71100-71153 Sentence denotes Adjusted R2 0.003 0.003 0.003 0.004 0.005 0.005
T647 71154-71220 Sentence denotes Observations 178,805 178,805 178,805 178,805 178,805 178,805
T648 71221-71309 Sentence denotes Note: *, **, *** indicate significance at the 0.10, 0.05, and 0.01 levels, respectively.
T649 71310-71375 Sentence denotes See Appendix A for definitions and measurements of the variables.
T650 71376-71485 Sentence denotes Table 5 Alternative measures of continued increasing public health threats and accumulative abnormal return.
T651 71486-71536 Sentence denotes CAR [−1, 1] CAR [−1, 1] CAR [−2, 2] CAR [−2, 2]
T652 71537-71555 Sentence denotes (A) (B) (C) (D)
T653 71556-71585 Sentence denotes CIPHT2 −0.001 ** −0.001 **
T654 71586-71605 Sentence denotes (−2.271) (−2.464)
T655 71606-71637 Sentence denotes CIPHT3 −0.001 ** −0.002 ***
T656 71638-71657 Sentence denotes (−2.324) (−3.079)
T657 71658-71710 Sentence denotes PRO_CASE 0.000 *** 0.000 *** 0.001 *** 0.001 ***
T658 71711-71745 Sentence denotes (3.107) (3.014) (3.911) (3.831)
T659 71746-71782 Sentence denotes SIZE −0.000 −0.000 −0.000 −0.000
T660 71783-71821 Sentence denotes (−0.587) (−0.587) (−0.978) (−0.978)
T661 71822-71857 Sentence denotes ROA −0.000 −0.000 −0.000 −0.000
T662 71858-71896 Sentence denotes (−0.986) (−0.986) (−1.196) (−1.196)
T663 71897-71949 Sentence denotes CURR −0.000 *** −0.000 *** −0.000 *** −0.000 ***
T664 71950-71988 Sentence denotes (−3.671) (−3.670) (−4.765) (−4.763)
T665 71989-72034 Sentence denotes R&D 0.000 ** 0.000 ** 0.000 *** 0.000 ***
T666 72035-72069 Sentence denotes (2.519) (2.519) (3.122) (3.122)
T667 72070-72110 Sentence denotes LOSS −0.001 −0.001 −0.001 * −0.001 *
T668 72111-72149 Sentence denotes (−1.549) (−1.549) (−1.902) (−1.902)
T669 72150-72185 Sentence denotes LEV −0.000 −0.000 −0.000 −0.000
T670 72186-72224 Sentence denotes (−1.010) (−1.010) (−1.132) (−1.131)
T671 72225-72277 Sentence denotes OPCF −0.004 *** −0.004 *** −0.008 *** −0.008 ***
T672 72278-72316 Sentence denotes (−4.128) (−4.127) (−5.553) (−5.553)
T673 72317-72349 Sentence denotes TURN 0.000 0.000 0.000 0.000
T674 72350-72384 Sentence denotes (0.865) (0.865) (1.130) (1.130)
T675 72385-72420 Sentence denotes CEO_AGE 0.000 0.000 0.000 0.000
T676 72421-72455 Sentence denotes (0.135) (0.135) (0.079) (0.079)
T677 72456-72491 Sentence denotes CEO_COM 0.000 0.000 0.000 0.000
T678 72492-72526 Sentence denotes (0.239) (0.239) (0.300) (0.300)
T679 72527-72578 Sentence denotes CEO_TEN 0.000 *** 0.000 *** 0.000 *** 0.000 ***
T680 72579-72613 Sentence denotes (2.742) (2.742) (3.557) (3.556)
T681 72614-72653 Sentence denotes CEO_DUA −0.000 −0.000 −0.001 −0.001
T682 72654-72692 Sentence denotes (−1.253) (−1.253) (−1.575) (−1.575)
T683 72693-72729 Sentence denotes Constant 0.002 0.002 0.004 0.004
T684 72730-72764 Sentence denotes (0.520) (0.516) (0.737) (0.713)
T685 72765-72792 Sentence denotes Week FE Yes Yes Yes Yes
T686 72793-72824 Sentence denotes Industry FE Yes Yes Yes Yes
T687 72825-72856 Sentence denotes Province FE Yes Yes Yes Yes
T688 72857-72896 Sentence denotes Adjusted R2 0.003 0.003 0.005 0.005
T689 72897-72945 Sentence denotes Observations 178,805 178,805 178,805 178,805
T690 72946-73034 Sentence denotes Note: *, **, *** indicate significance at the 0.10, 0.05, and 0.01 levels, respectively.
T691 73035-73100 Sentence denotes See Appendix A for definitions and measurements of the variables.
T692 73101-73130 Sentence denotes Table 6 Falsification tests.
T693 73131-73155 Sentence denotes CAR [−1, 1] CAR [−2, 2]
T694 73156-73164 Sentence denotes (A) (B)
T695 73165-73191 Sentence denotes Pseudo_CIPHT 0.000 0.000
T696 73192-73208 Sentence denotes (0.358) (0.225)
T697 73209-73239 Sentence denotes PRO_CASE 0.000 *** 0.001 ***
T698 73240-73256 Sentence denotes (2.930) (3.721)
T699 73257-73277 Sentence denotes SIZE −0.000 −0.000
T700 73278-73296 Sentence denotes (−0.587) (−0.978)
T701 73297-73316 Sentence denotes ROA −0.000 −0.000
T702 73317-73335 Sentence denotes (−0.986) (−1.196)
T703 73336-73364 Sentence denotes CURR −0.000 *** −0.000 ***
T704 73365-73383 Sentence denotes (−3.673) (−4.767)
T705 73384-73408 Sentence denotes R&D 0.000 ** 0.000 ***
T706 73409-73425 Sentence denotes (2.519) (3.122)
T707 73426-73448 Sentence denotes LOSS −0.001 −0.001 *
T708 73449-73467 Sentence denotes (−1.548) (−1.901)
T709 73468-73487 Sentence denotes LEV −0.000 −0.000
T710 73488-73506 Sentence denotes (−1.011) (−1.132)
T711 73507-73535 Sentence denotes OPCF −0.004 *** −0.008 ***
T712 73536-73554 Sentence denotes (−4.124) (−5.548)
T713 73555-73573 Sentence denotes TURN 0.000 0.000
T714 73574-73590 Sentence denotes (0.869) (1.135)
T715 73591-73612 Sentence denotes CEO_AGE 0.000 0.000
T716 73613-73629 Sentence denotes (0.134) (0.078)
T717 73630-73651 Sentence denotes CEO_COM 0.000 0.000
T718 73652-73668 Sentence denotes (0.240) (0.301)
T719 73669-73698 Sentence denotes CEO_TEN 0.000 *** 0.000 ***
T720 73699-73715 Sentence denotes (2.744) (3.559)
T721 73716-73739 Sentence denotes CEO_DUA −0.000 −0.001
T722 73740-73758 Sentence denotes (−1.254) (−1.576)
T723 73759-73781 Sentence denotes Constant 0.002 0.004
T724 73782-73798 Sentence denotes (0.597) (0.820)
T725 73799-73816 Sentence denotes Week FE Yes Yes
T726 73817-73838 Sentence denotes Industry FE Yes Yes
T727 73839-73860 Sentence denotes Province FE Yes Yes
T728 73861-73886 Sentence denotes Adjusted R2 0.003 0.005
T729 73887-73917 Sentence denotes Observations 178,805 178,805
T730 73918-74006 Sentence denotes Note: *, **, *** indicate significance at the 0.10, 0.05, and 0.01 levels, respectively.
T731 74007-74072 Sentence denotes See Appendix A for definitions and measurements of the variables.
T732 74073-74210 Sentence denotes Table 7 Continued increasing public health threats and accumulative abnormal return based on the instrumental variables (2SLS) approach.
T733 74211-74242 Sentence denotes CIPHT CAR [−1, 1] CAR [−2, 2]
T734 74243-74256 Sentence denotes (A) (B) (C)
T735 74257-74295 Sentence denotes Predicted_CIPHT −0.001 * −0.003 ***
T736 74296-74314 Sentence denotes (−1.844) (−3.236)
T737 74315-74357 Sentence denotes PRO_CASE −4.958 *** 0.001 *** 0.001 ***
T738 74358-74385 Sentence denotes (−19.035) (3.648) (4.604)
T739 74386-74415 Sentence denotes SIZE 0.000 −0.000 −0.000 *
T740 74416-74443 Sentence denotes (0.082) (−1.374) (−1.695)
T741 74444-74471 Sentence denotes ROA −0.000 −0.000 −0.000
T742 74472-74500 Sentence denotes (−0.040) (−1.194) (−1.456)
T743 74501-74536 Sentence denotes CURR 0.001 −0.000 *** −0.000 ***
T744 74537-74564 Sentence denotes (0.658) (−4.119) (−5.284)
T745 74565-74596 Sentence denotes R&D 0.000 0.000 ** 0.000 ***
T746 74597-74622 Sentence denotes (0.012) (2.487) (3.312)
T747 74623-74651 Sentence denotes LOSS −0.001 −0.000 −0.001
T748 74652-74680 Sentence denotes (−0.044) (−0.924) (−1.168)
T749 74681-74707 Sentence denotes LEV 0.001 −0.000 −0.000
T750 74708-74735 Sentence denotes (0.047) (−0.433) (−0.562)
T751 74736-74772 Sentence denotes OPCF −0.036 −0.005 *** −0.009 ***
T752 74773-74801 Sentence denotes (−0.661) (−4.826) (−6.114)
T753 74802-74828 Sentence denotes TURN −0.004 0.000 0.000
T754 74829-74855 Sentence denotes (−0.538) (0.938) (1.194)
T755 74856-74886 Sentence denotes CEO_AGE 0.000 −0.000 −0.000
T756 74887-74914 Sentence denotes (0.160) (−0.346) (−0.600)
T757 74915-74945 Sentence denotes CEO_COM −0.000 −0.000 0.000
T758 74946-74973 Sentence denotes (−0.036) (−0.203) (0.007)
T759 74974-75011 Sentence denotes CEO_TEN −0.001 0.000 *** 0.000 ***
T760 75012-75038 Sentence denotes (−0.297) (2.932) (3.629)
T761 75039-75074 Sentence denotes CEO_DUA 0.001 −0.001 * −0.001 **
T762 75075-75102 Sentence denotes (0.060) (−1.767) (−2.420)
T763 75103-75124 Sentence denotes IMMIGRANT −0.306 ***
T764 75125-75134 Sentence denotes (−49.316)
T765 75135-75155 Sentence denotes EMIGRANT −0.058 ***
T766 75156-75164 Sentence denotes (−5.352)
T767 75165-75200 Sentence denotes Constant 3.869 *** −0.005 −0.007
T768 75201-75229 Sentence denotes (23.663) (−0.721) (−0.740)
T769 75230-75252 Sentence denotes Week FE Yes Yes Yes
T770 75253-75279 Sentence denotes Industry FE Yes Yes Yes
T771 75280-75306 Sentence denotes Province FE Yes Yes Yes
T772 75307-75349 Sentence denotes Pseudo R2/Adjusted R2 0.744 0.003 0.005
T773 75350-75389 Sentence denotes Observations 160,744 160,744 160,744
T774 75390-75478 Sentence denotes Note: *, **, *** indicate significance at the 0.10, 0.05, and 0.01 levels, respectively.
T775 75479-75544 Sentence denotes See Appendix A for definitions and measurements of the variables.
T776 75545-75683 Sentence denotes Table 8 Continued increasing public health threats and accumulative abnormal return conditioning on provincial information accessibility.
T777 75684-75760 Sentence denotes CAR [−1, 1] CAR [−1, 1] CAR [−1, 1] CAR [−2, 2] CAR [−2, 2] CAR [−2, 2]
T778 75761-75790 Sentence denotes (A) (B) (C) (D) (E) (F)
T779 75791-75868 Sentence denotes CIPHT −0.002 *** −0.002 *** −0.002 *** −0.002 *** −0.004 *** −0.003 ***
T780 75869-75927 Sentence denotes (−3.570) (−5.012) (−4.678) (−4.423) (−6.268) (−5.810)
T781 75928-75968 Sentence denotes CIPHT × High_WEB 0.002 *** 0.003 ***
T782 75969-75987 Sentence denotes (3.461) (4.455)
T783 75988-76014 Sentence denotes High_WEB −0.002 −0.003
T784 76015-76035 Sentence denotes (−0.896) (−1.024)
T785 76036-76077 Sentence denotes CIPHT × High_MED 0.003 *** 0.004 ***
T786 76078-76096 Sentence denotes (5.500) (7.032)
T787 76097-76124 Sentence denotes High_MED −0.002 −0.002
T788 76125-76145 Sentence denotes (−0.732) (−0.908)
T789 76146-76188 Sentence denotes CIPHT × High_MOB 0.003 *** 0.004 ***
T790 76189-76207 Sentence denotes (5.163) (6.550)
T791 76208-76236 Sentence denotes High_MOB −0.001 −0.001
T792 76237-76257 Sentence denotes (−0.363) (−0.428)
T793 76258-76332 Sentence denotes PRO_CASE 0.000 *** 0.001 *** 0.001 *** 0.001 *** 0.001 *** 0.001 ***
T794 76333-76385 Sentence denotes (3.109) (3.247) (3.249) (3.940) (4.116) (4.116)
T795 76386-76438 Sentence denotes SIZE −0.000 −0.000 −0.000 −0.000 −0.000 −0.000
T796 76439-76497 Sentence denotes (−0.588) (−0.586) (−0.588) (−0.979) (−0.977) (−0.979)
T797 76498-76549 Sentence denotes ROA −0.000 −0.000 −0.000 −0.000 −0.000 −0.000
T798 76550-76608 Sentence denotes (−0.985) (−0.986) (−0.986) (−1.195) (−1.196) (−1.196)
T799 76609-76685 Sentence denotes CURR −0.000 *** −0.000 *** −0.000 *** −0.000 *** −0.000 *** −0.000 ***
T800 76686-76744 Sentence denotes (−3.670) (−3.661) (−3.664) (−4.763) (−4.753) (−4.757)
T801 76745-76811 Sentence denotes R&D 0.000 ** 0.000 ** 0.000 ** 0.000 *** 0.000 *** 0.000 ***
T802 76812-76864 Sentence denotes (2.519) (2.519) (2.519) (3.122) (3.122) (3.122)
T803 76865-76923 Sentence denotes LOSS −0.001 −0.001 −0.001 −0.001 * −0.001 * −0.001 *
T804 76924-76982 Sentence denotes (−1.548) (−1.549) (−1.548) (−1.900) (−1.902) (−1.901)
T805 76983-77034 Sentence denotes LEV −0.000 −0.000 −0.000 −0.000 −0.000 −0.000
T806 77035-77093 Sentence denotes (−1.009) (−1.009) (−1.010) (−1.130) (−1.129) (−1.132)
T807 77094-77170 Sentence denotes OPCF −0.004 *** −0.004 *** −0.004 *** −0.008 *** −0.008 *** −0.008 ***
T808 77171-77229 Sentence denotes (−4.122) (−4.125) (−4.141) (−5.546) (−5.550) (−5.571)
T809 77230-77276 Sentence denotes TURN 0.000 0.000 0.000 0.000 0.000 0.000
T810 77277-77329 Sentence denotes (0.871) (0.872) (0.861) (1.138) (1.140) (1.125)
T811 77330-77379 Sentence denotes CEO_AGE 0.000 0.000 0.000 0.000 0.000 0.000
T812 77380-77432 Sentence denotes (0.134) (0.134) (0.135) (0.078) (0.077) (0.079)
T813 77433-77482 Sentence denotes CEO_COM 0.000 0.000 0.000 0.000 0.000 0.000
T814 77483-77535 Sentence denotes (0.239) (0.239) (0.239) (0.301) (0.301) (0.300)
T815 77536-77609 Sentence denotes CEO_TEN 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 ***
T816 77610-77662 Sentence denotes (2.742) (2.743) (2.740) (3.557) (3.558) (3.554)
T817 77663-77718 Sentence denotes CEO_DUA −0.000 −0.000 −0.000 −0.001 −0.001 −0.001
T818 77719-77777 Sentence denotes (−1.254) (−1.250) (−1.250) (−1.577) (−1.572) (−1.572)
T819 77778-77828 Sentence denotes Constant 0.003 0.002 0.003 0.005 0.004 0.005
T820 77829-77881 Sentence denotes (0.762) (0.530) (0.829) (0.972) (0.741) (1.103)
T821 77882-77919 Sentence denotes Week FE Yes Yes Yes Yes Yes Yes
T822 77920-77961 Sentence denotes Industry FE Yes Yes Yes Yes Yes Yes
T823 77962-78003 Sentence denotes Province FE Yes Yes Yes Yes Yes Yes
T824 78004-78057 Sentence denotes Adjusted R2 0.003 0.003 0.003 0.005 0.005 0.005
T825 78058-78124 Sentence denotes Observations 178,805 178,805 178,805 178,805 178,805 178,805
T826 78125-78213 Sentence denotes Note: *, **, *** indicate significance at the 0.10, 0.05, and 0.01 levels, respectively.
T827 78214-78279 Sentence denotes See Appendix A for definitions and measurements of the variables.
T828 78280-78408 Sentence denotes Table 9 Continued increasing public health threats and accumulative abnormal return conditioning on provincial economic growth.
T829 78409-78485 Sentence denotes CAR [−1, 1] CAR [−1, 1] CAR [−1, 1] CAR [−2, 2] CAR [−2, 2] CAR [−2, 2]
T830 78486-78515 Sentence denotes (A) (B) (C) (D) (E) (F)
T831 78516-78593 Sentence denotes CIPHT −0.001 *** −0.001 *** −0.002 *** −0.002 *** −0.002 *** −0.003 ***
T832 78594-78652 Sentence denotes (−3.459) (−3.281) (−3.546) (−4.263) (−4.103) (−4.539)
T833 78653-78693 Sentence denotes CIPHT × High_GRP 0.002 *** 0.003 ***
T834 78694-78712 Sentence denotes (3.267) (4.164)
T835 78713-78738 Sentence denotes High_GRP −0.000 0.000
T836 78739-78758 Sentence denotes (−0.074) (0.132)
T837 78759-78800 Sentence denotes CIPHT × High_EMR 0.001 *** 0.002 ***
T838 78801-78819 Sentence denotes (2.679) (3.569)
T839 78820-78853 Sentence denotes High_EMR 0.011 *** 0.018 ***
T840 78854-78872 Sentence denotes (4.437) (5.556)
T841 78873-78915 Sentence denotes CIPHT × High_URB 0.001 *** 0.003 ***
T842 78916-78934 Sentence denotes (2.925) (4.025)
T843 78935-78963 Sentence denotes High_URB 0.003 0.005 *
T844 78964-78982 Sentence denotes (1.326) (1.693)
T845 78983-79057 Sentence denotes PRO_CASE 0.000 *** 0.000 *** 0.000 *** 0.001 *** 0.001 *** 0.001 ***
T846 79058-79110 Sentence denotes (3.109) (3.146) (3.182) (3.939) (3.990) (4.044)
T847 79111-79163 Sentence denotes SIZE −0.000 −0.000 −0.000 −0.000 −0.000 −0.000
T848 79164-79222 Sentence denotes (−0.588) (−0.587) (−0.587) (−0.979) (−0.978) (−0.978)
T849 79223-79274 Sentence denotes ROA −0.000 −0.000 −0.000 −0.000 −0.000 −0.000
T850 79275-79333 Sentence denotes (−0.985) (−0.986) (−0.986) (−1.195) (−1.196) (−1.196)
T851 79334-79410 Sentence denotes CURR −0.000 *** −0.000 *** −0.000 *** −0.000 *** −0.000 *** −0.000 ***
T852 79411-79469 Sentence denotes (−3.669) (−3.667) (−3.664) (−4.763) (−4.760) (−4.756)
T853 79470-79536 Sentence denotes R&D 0.000 ** 0.000 ** 0.000 ** 0.000 *** 0.000 *** 0.000 ***
T854 79537-79589 Sentence denotes (2.519) (2.519) (2.519) (3.122) (3.122) (3.122)
T855 79590-79648 Sentence denotes LOSS −0.001 −0.001 −0.001 −0.001 * −0.001 * −0.001 *
T856 79649-79707 Sentence denotes (−1.547) (−1.548) (−1.549) (−1.900) (−1.901) (−1.902)
T857 79708-79759 Sentence denotes LEV −0.000 −0.000 −0.000 −0.000 −0.000 −0.000
T858 79760-79818 Sentence denotes (−1.009) (−1.010) (−1.009) (−1.130) (−1.132) (−1.130)
T859 79819-79895 Sentence denotes OPCF −0.004 *** −0.004 *** −0.004 *** −0.008 *** −0.008 *** −0.008 ***
T860 79896-79954 Sentence denotes (−4.121) (−4.134) (−4.126) (−5.545) (−5.561) (−5.551)
T861 79955-80001 Sentence denotes TURN 0.000 0.000 0.000 0.000 0.000 0.000
T862 80002-80054 Sentence denotes (0.871) (0.863) (0.869) (1.138) (1.128) (1.136)
T863 80055-80104 Sentence denotes CEO_AGE 0.000 0.000 0.000 0.000 0.000 0.000
T864 80105-80157 Sentence denotes (0.135) (0.135) (0.135) (0.078) (0.078) (0.078)
T865 80158-80207 Sentence denotes CEO_COM 0.000 0.000 0.000 0.000 0.000 0.000
T866 80208-80260 Sentence denotes (0.239) (0.239) (0.239) (0.301) (0.300) (0.300)
T867 80261-80334 Sentence denotes CEO_TEN 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 ***
T868 80335-80387 Sentence denotes (2.742) (2.742) (2.742) (3.557) (3.556) (3.557)
T869 80388-80443 Sentence denotes CEO_DUA −0.000 −0.000 −0.000 −0.001 −0.001 −0.001
T870 80444-80502 Sentence denotes (−1.253) (−1.252) (−1.251) (−1.576) (−1.574) (−1.573)
T871 80503-80553 Sentence denotes Constant 0.003 0.002 0.002 0.005 0.004 0.004
T872 80554-80606 Sentence denotes (0.761) (0.522) (0.521) (0.972) (0.731) (0.730)
T873 80607-80644 Sentence denotes Week FE Yes Yes Yes Yes Yes Yes
T874 80645-80686 Sentence denotes Industry FE Yes Yes Yes Yes Yes Yes
T875 80687-80728 Sentence denotes Province FE Yes Yes Yes Yes Yes Yes
T876 80729-80782 Sentence denotes Adjusted R2 0.003 0.003 0.003 0.005 0.005 0.005
T877 80783-80849 Sentence denotes Observations 178,805 178,805 178,805 178,805 178,805 178,805
T878 80850-80938 Sentence denotes Note: *, **, *** indicate significance at the 0.10, 0.05, and 0.01 levels, respectively.
T879 80939-81004 Sentence denotes See Appendix A for definitions and measurements of the variables.
T880 81005-81091 Sentence denotes Table 10 Continued decreasing public health threats and accumulative abnormal return.
T881 81092-81116 Sentence denotes CAR [−1, 1] CAR [−2, 2]
T882 81117-81125 Sentence denotes (A) (B)
T883 81126-81153 Sentence denotes CDPHT 0.003 *** 0.004 ***
T884 81154-81170 Sentence denotes (6.511) (7.598)
T885 81171-81201 Sentence denotes PRO_CASE 0.001 *** 0.001 ***
T886 81202-81218 Sentence denotes (3.443) (4.318)
T887 81219-81239 Sentence denotes SIZE −0.000 −0.000
T888 81240-81258 Sentence denotes (−0.589) (−0.980)
T889 81259-81278 Sentence denotes ROA −0.000 −0.000
T890 81279-81297 Sentence denotes (−0.987) (−1.197)
T891 81298-81326 Sentence denotes CURR −0.000 *** −0.000 ***
T892 81327-81345 Sentence denotes (−3.661) (−4.754)
T893 81346-81370 Sentence denotes R&D 0.000 ** 0.000 ***
T894 81371-81387 Sentence denotes (2.519) (3.122)
T895 81388-81410 Sentence denotes LOSS −0.001 −0.001 *
T896 81411-81429 Sentence denotes (−1.549) (−1.902)
T897 81430-81449 Sentence denotes LEV −0.000 −0.000
T898 81450-81468 Sentence denotes (−1.011) (−1.132)
T899 81469-81497 Sentence denotes OPCF −0.004 *** −0.008 ***
T900 81498-81516 Sentence denotes (−4.125) (−5.550)
T901 81517-81535 Sentence denotes TURN 0.000 0.000
T902 81536-81552 Sentence denotes (0.869) (1.136)
T903 81553-81574 Sentence denotes CEO_AGE 0.000 0.000
T904 81575-81591 Sentence denotes (0.132) (0.076)
T905 81592-81613 Sentence denotes CEO_COM 0.000 0.000
T906 81614-81630 Sentence denotes (0.239) (0.300)
T907 81631-81660 Sentence denotes CEO_TEN 0.000 *** 0.000 ***
T908 81661-81677 Sentence denotes (2.739) (3.553)
T909 81678-81701 Sentence denotes CEO_DUA −0.000 −0.001
T910 81702-81720 Sentence denotes (−1.248) (−1.570)
T911 81721-81743 Sentence denotes Constant 0.002 0.003
T912 81744-81760 Sentence denotes (0.463) (0.626)
T913 81761-81778 Sentence denotes Week FE Yes Yes
T914 81779-81800 Sentence denotes Industry FE Yes Yes
T915 81801-81822 Sentence denotes Province FE Yes Yes
T916 81823-81848 Sentence denotes Adjusted R2 0.003 0.005
T917 81849-81879 Sentence denotes Observations 178,805 178,805
T918 81880-81968 Sentence denotes Note: *, **, *** indicate significance at the 0.10, 0.05, and 0.01 levels, respectively.
T919 81969-82034 Sentence denotes See Appendix A for definitions and measurements of the variables.
T920 82035-82169 Sentence denotes Table 11 Continued increasing public health threats and accumulative abnormal return conditioning on the start of community lockdown.
T921 82170-82194 Sentence denotes CAR [-1, 1] CAR [−2, 2]
T922 82195-82203 Sentence denotes (A) (B)
T923 82204-82233 Sentence denotes CIPHT −0.007 *** −0.012 ***
T924 82234-82252 Sentence denotes (−7.105) (−8.778)
T925 82253-82296 Sentence denotes CIPHT × POST_Lockdown 0.007 *** 0.011 ***
T926 82297-82313 Sentence denotes (6.766) (8.379)
T927 82314-82351 Sentence denotes POST_Lockdown −0.006 *** −0.010 ***
T928 82352-82370 Sentence denotes (−6.449) (−7.826)
T929 82371-82400 Sentence denotes PRO_CASE 0.000 ** 0.001 ***
T930 82401-82417 Sentence denotes (2.319) (2.945)
T931 82418-82438 Sentence denotes SIZE −0.000 −0.000
T932 82439-82457 Sentence denotes (−0.592) (−0.984)
T933 82458-82477 Sentence denotes ROA −0.000 −0.000
T934 82478-82496 Sentence denotes (−0.986) (−1.196)
T935 82497-82525 Sentence denotes CURR −0.000 *** −0.000 ***
T936 82526-82544 Sentence denotes (−3.666) (−4.759)
T937 82545-82569 Sentence denotes R&D 0.000 ** 0.000 ***
T938 82570-82586 Sentence denotes (2.519) (3.122)
T939 82587-82609 Sentence denotes LOSS −0.001 −0.001 *
T940 82610-82628 Sentence denotes (−1.549) (−1.902)
T941 82629-82648 Sentence denotes LEV −0.000 −0.000
T942 82649-82667 Sentence denotes (−1.012) (−1.134)
T943 82668-82696 Sentence denotes OPCF −0.004 *** −0.008 ***
T944 82697-82715 Sentence denotes (−4.130) (−5.557)
T945 82716-82734 Sentence denotes TURN 0.000 0.000
T946 82735-82751 Sentence denotes (0.867) (1.133)
T947 82752-82773 Sentence denotes CEO_AGE 0.000 0.000
T948 82774-82790 Sentence denotes (0.132) (0.075)
T949 82791-82812 Sentence denotes CEO_COM 0.000 0.000
T950 82813-82829 Sentence denotes (0.239) (0.301)
T951 82830-82859 Sentence denotes CEO_TEN 0.000 *** 0.000 ***
T952 82860-82876 Sentence denotes (2.744) (3.558)
T953 82877-82900 Sentence denotes CEO_DUA −0.000 −0.001
T954 82901-82919 Sentence denotes (−1.247) (−1.568)
T955 82920-82942 Sentence denotes Constant 0.004 0.008
T956 82943-82959 Sentence denotes (1.164) (1.620)
T957 82960-82977 Sentence denotes Week FE Yes Yes
T958 82978-82999 Sentence denotes Industry FE Yes Yes
T959 83000-83021 Sentence denotes Province FE Yes Yes
T960 83022-83047 Sentence denotes Adjusted R2 0.003 0.005
T961 83048-83078 Sentence denotes Observations 178,805 178,805
T962 83079-83167 Sentence denotes Note: *, **, *** indicate significance at the 0.10, 0.05, and 0.01 levels, respectively.
T963 83168-83233 Sentence denotes See Appendix A for definitions and measurements of the variables.
T964 83234-83363 Sentence denotes Table 12 Continued increasing public health threats and accumulative abnormal return conditioning on firm-level characteristics.
T965 83364-83440 Sentence denotes CAR [−1, 1] CAR [−1, 1] CAR [−1, 1] CAR [−2, 2] CAR [−2, 2] CAR [−2, 2]
T966 83441-83469 Sentence denotes (A) (B) (C) (D) (E) (F)
T967 83470-83547 Sentence denotes CIPHT −0.002 *** −0.002 *** −0.005 *** −0.003 *** −0.002 *** −0.008 ***
T968 83548-83606 Sentence denotes (−4.580) (−3.633) (−4.666) (−5.843) (−4.384) (−5.603)
T969 83607-83649 Sentence denotes CIPHT × High_FSALE 0.004 *** 0.007 ***
T970 83650-83668 Sentence denotes (7.277) (9.758)
T971 83669-83705 Sentence denotes High_FSALE −0.003 *** −0.005 ***
T972 83706-83727 Sentence denotes (−9.163) (−11.684)
T973 83728-83770 Sentence denotes CIPHT × High_OPCF 0.002 *** 0.004 ***
T974 83771-83789 Sentence denotes (4.330) (5.222)
T975 83790-83826 Sentence denotes High_OPCF −0.002 *** −0.003 ***
T976 83827-83847 Sentence denotes (−5.731) (−7.332)
T977 83848-83892 Sentence denotes CIPHT × Clean_OPIN 0.004 *** 0.006 ***
T978 83893-83911 Sentence denotes (4.067) (4.877)
T979 83912-83942 Sentence denotes Clean_OPIN −0.001 −0.001
T980 83943-83963 Sentence denotes (−0.887) (−1.204)
T981 83964-84038 Sentence denotes PRO_CASE 0.000 *** 0.000 *** 0.000 *** 0.001 *** 0.001 *** 0.001 ***
T982 84039-84091 Sentence denotes (3.070) (3.074) (3.058) (3.891) (3.894) (3.875)
T983 84092-84142 Sentence denotes SIZE 0.000 −0.000 −0.000 0.000 −0.000 −0.000
T984 84143-84199 Sentence denotes (1.476) (−0.947) (−0.818) (1.558) (−1.458) (−1.234)
T985 84200-84251 Sentence denotes ROA −0.000 −0.000 −0.000 −0.000 −0.000 −0.000
T986 84252-84310 Sentence denotes (−1.004) (−1.015) (−1.106) (−1.219) (−1.232) (−1.333)
T987 84311-84387 Sentence denotes CURR −0.000 *** −0.000 *** −0.000 *** −0.000 *** −0.000 *** −0.000 ***
T988 84388-84446 Sentence denotes (−3.863) (−3.299) (−3.775) (−5.000) (−4.267) (−4.879)
T989 84447-84513 Sentence denotes R&D 0.000 ** 0.000 ** 0.000 ** 0.000 *** 0.000 *** 0.000 ***
T990 84514-84566 Sentence denotes (2.453) (2.497) (2.524) (3.041) (3.094) (3.128)
T991 84567-84628 Sentence denotes LOSS −0.001 −0.001 * −0.001 −0.001 * −0.001 ** −0.001 *
T992 84629-84687 Sentence denotes (−1.454) (−1.657) (−1.341) (−1.787) (−2.046) (−1.672)
T993 84688-84739 Sentence denotes LEV −0.000 −0.000 −0.000 −0.000 −0.000 −0.000
T994 84740-84798 Sentence denotes (−0.981) (−1.039) (−0.831) (−1.099) (−1.168) (−0.940)
T995 84799-84874 Sentence denotes OPCF −0.004 *** −0.002 ** −0.004 *** −0.008 *** −0.004 *** −0.008 ***
T996 84875-84933 Sentence denotes (−4.078) (−1.998) (−4.225) (−5.497) (−2.712) (−5.668)
T997 84934-84980 Sentence denotes TURN 0.000 0.000 0.000 0.000 0.000 0.000
T998 84981-85033 Sentence denotes (1.086) (0.862) (0.955) (1.401) (1.127) (1.226)
T999 85034-85086 Sentence denotes CEO_AGE −0.000 0.000 0.000 −0.000 0.000 −0.000
T1000 85087-85142 Sentence denotes (−0.077) (0.233) (0.020) (−0.183) (0.210) (−0.048)
T1001 85143-85192 Sentence denotes CEO_COM 0.000 0.000 0.000 0.000 0.000 0.000
T1002 85193-85245 Sentence denotes (0.178) (0.210) (0.236) (0.228) (0.260) (0.297)
T1003 85246-85319 Sentence denotes CEO_TEN 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 ***
T1004 85320-85372 Sentence denotes (3.051) (2.588) (2.769) (3.935) (3.349) (3.589)
T1005 85373-85430 Sentence denotes CEO_DUA −0.000 −0.000 −0.000 −0.001 −0.001 −0.001 *
T1006 85431-85489 Sentence denotes (−1.177) (−1.170) (−1.326) (−1.484) (−1.463) (−1.657)
T1007 85490-85542 Sentence denotes Constant −0.002 0.004 0.004 −0.002 0.006 0.007
T1008 85543-85597 Sentence denotes (−0.404) (1.001) (1.017) (−0.451) (1.285) (1.289)
T1009 85598-85635 Sentence denotes Week FE Yes Yes Yes Yes Yes Yes
T1010 85636-85677 Sentence denotes Industry FE Yes Yes Yes Yes Yes Yes
T1011 85678-85719 Sentence denotes Province FE Yes Yes Yes Yes Yes Yes
T1012 85720-85773 Sentence denotes Adjusted R2 0.003 0.003 0.003 0.006 0.005 0.005
T1013 85774-85840 Sentence denotes Observations 178,805 178,805 178,805 178,805 178,805 178,805
T1014 85841-85929 Sentence denotes Note: *, **, *** indicate significance at the 0.10, 0.05, and 0.01 levels, respectively.
T1015 85930-85995 Sentence denotes See Appendix A for definitions and measurements of the variables.
T1016 85996-86158 Sentence denotes Table 13 Continued increasing public health threats and accumulative abnormal return conditioning on the volatility of provincial increase in new COVID-19 cases.
T1017 86159-86183 Sentence denotes CAR [−1, 1] CAR [−2, 2]
T1018 86184-86192 Sentence denotes (A) (B)
T1019 86193-86221 Sentence denotes CIPHT −0.001 ** −0.002 ***
T1020 86222-86240 Sentence denotes (−2.533) (−3.177)
T1021 86241-86280 Sentence denotes CIPHT × High_Volatility −0.001 −0.001
T1022 86281-86299 Sentence denotes (−1.089) (−1.022)
T1023 86300-86336 Sentence denotes High_Volatility 0.002 ** 0.002 ***
T1024 86337-86353 Sentence denotes (2.448) (2.765)
T1025 86354-86384 Sentence denotes PRO_CASE 0.000 *** 0.001 ***
T1026 86385-86401 Sentence denotes (3.114) (3.930)
T1027 86402-86422 Sentence denotes SIZE −0.000 −0.000
T1028 86423-86441 Sentence denotes (−0.586) (−0.977)
T1029 86442-86461 Sentence denotes ROA −0.000 −0.000
T1030 86462-86480 Sentence denotes (−0.986) (−1.196)
T1031 86481-86509 Sentence denotes CURR −0.000 *** −0.000 ***
T1032 86510-86528 Sentence denotes (−3.672) (−4.766)
T1033 86529-86553 Sentence denotes R&D 0.000 ** 0.000 ***
T1034 86554-86570 Sentence denotes (2.519) (3.122)
T1035 86571-86593 Sentence denotes LOSS −0.001 −0.001 *
T1036 86594-86612 Sentence denotes (−1.549) (−1.902)
T1037 86613-86632 Sentence denotes LEV −0.000 −0.000
T1038 86633-86651 Sentence denotes (−1.010) (−1.132)
T1039 86652-86680 Sentence denotes OPCF −0.004 *** −0.008 ***
T1040 86681-86699 Sentence denotes (−4.126) (−5.551)
T1041 86700-86718 Sentence denotes TURN 0.000 0.000
T1042 86719-86735 Sentence denotes (0.867) (1.132)
T1043 86736-86757 Sentence denotes CEO_AGE 0.000 0.000
T1044 86758-86774 Sentence denotes (0.133) (0.077)
T1045 86775-86796 Sentence denotes CEO_COM 0.000 0.000
T1046 86797-86813 Sentence denotes (0.239) (0.301)
T1047 86814-86843 Sentence denotes CEO_TEN 0.000 *** 0.000 ***
T1048 86844-86860 Sentence denotes (2.742) (3.556)
T1049 86861-86884 Sentence denotes CEO_DUA −0.000 −0.001
T1050 86885-86903 Sentence denotes (−1.253) (−1.575)
T1051 86904-86926 Sentence denotes Constant 0.003 0.004
T1052 86927-86943 Sentence denotes (0.663) (0.862)
T1053 86944-86961 Sentence denotes Week FE Yes Yes
T1054 86962-86983 Sentence denotes Industry FE Yes Yes
T1055 86984-87005 Sentence denotes Province FE Yes Yes
T1056 87006-87031 Sentence denotes Adjusted R2 0.003 0.005
T1057 87032-87062 Sentence denotes Observations 178,805 178,805
T1058 87063-87151 Sentence denotes Note: *, **, *** indicate significance at the 0.10, 0.05, and 0.01 levels, respectively.
T1059 87152-87217 Sentence denotes See Appendix A for definitions and measurements of the variables.

LitCovid-PubTator

Id Subject Object Predicate Lexical cue tao:has_database_id
3 133-157 Disease denotes coronavirus disease 2019 MESH:C000657245
4 159-167 Disease denotes COVID-19 MESH:C000657245
5 584-592 Disease denotes COVID-19 MESH:C000657245
12 1269-1280 Species denotes coronavirus Tax:11118
13 1699-1710 Species denotes coronavirus Tax:11118
14 1437-1461 Disease denotes coronavirus disease 2019 MESH:C000657245
15 1463-1471 Disease denotes COVID-19 MESH:C000657245
16 1539-1547 Disease denotes COVID-19 MESH:C000657245
17 2021-2029 Disease denotes COVID-19 MESH:C000657245
22 2321-2326 Species denotes human Tax:9606
23 2336-2344 Disease denotes COVID-19 MESH:C000657245
24 2561-2569 Disease denotes COVID-19 MESH:C000657245
25 2956-2964 Disease denotes COVID-19 MESH:C000657245
29 4066-4074 Disease denotes COVID-19 MESH:C000657245
30 4094-4102 Disease denotes COVID-19 MESH:C000657245
31 4321-4329 Disease denotes COVID-19 MESH:C000657245
33 4821-4829 Disease denotes COVID-19 MESH:C000657245
36 5934-5942 Species denotes emigrant Tax:320267
37 5601-5614 Disease denotes falsification
39 7773-7781 Disease denotes COVID-19 MESH:C000657245
42 8069-8077 Disease denotes COVID-19 MESH:C000657245
43 8448-8456 Disease denotes COVID-19 MESH:C000657245
46 9318-9321 Gene denotes 2.1 Gene:6700
47 9337-9345 Disease denotes COVID-19 MESH:C000657245
55 9397-9414 Species denotes novel coronavirus Tax:2697049
56 9416-9425 Species denotes 2019-nCoV Tax:2697049
57 9487-9492 Species denotes human Tax:9606
58 10162-10167 Species denotes human Tax:9606
59 9502-9510 Disease denotes COVID-19 MESH:C000657245
60 10202-10210 Disease denotes COVID-19 MESH:C000657245
61 10241-10249 Disease denotes COVID-19 MESH:C000657245
69 10365-10373 Disease denotes COVID-19 MESH:C000657245
70 10396-10404 Disease denotes COVID-19 MESH:C000657245
71 10505-10513 Disease denotes COVID-19 MESH:C000657245
72 10527-10535 Disease denotes infected MESH:D007239
73 10572-10578 Disease denotes deaths MESH:D003643
74 10749-10755 Disease denotes deaths MESH:D003643
75 10760-10768 Disease denotes COVID-19 MESH:C000657245
80 10924-10935 Species denotes coronavirus Tax:11118
81 11125-11136 Species denotes coronavirus Tax:11118
82 11344-11352 Disease denotes COVID-19 MESH:C000657245
83 11510-11518 Disease denotes COVID-19 MESH:C000657245
91 12064-12075 Species denotes coronavirus Tax:11118
92 11587-11595 Disease denotes COVID-19 MESH:C000657245
93 11726-11734 Disease denotes COVID-19 MESH:C000657245
94 11768-11775 Disease denotes anxiety MESH:D001007
95 11806-11814 Disease denotes COVID-19 MESH:C000657245
96 12279-12287 Disease denotes COVID-19 MESH:C000657245
97 12557-12565 Disease denotes COVID-19 MESH:C000657245
111 13534-13539 Species denotes human Tax:9606
112 12632-12640 Disease denotes COVID-19 MESH:C000657245
113 12768-12776 Disease denotes COVID-19 MESH:C000657245
114 12953-12961 Disease denotes COVID-19 MESH:C000657245
115 13042-13050 Disease denotes COVID-19 MESH:C000657245
116 13242-13250 Disease denotes COVID-19 MESH:C000657245
117 13274-13282 Disease denotes COVID-19 MESH:C000657245
118 13417-13425 Disease denotes COVID-19 MESH:C000657245
119 13632-13640 Disease denotes COVID-19 MESH:C000657245
120 13651-13657 Disease denotes deaths MESH:D003643
121 13749-13757 Disease denotes COVID-19 MESH:C000657245
122 13788-13793 Disease denotes shock MESH:D012769
123 13939-13947 Disease denotes COVID-19 MESH:C000657245
127 14057-14065 Disease denotes COVID-19 MESH:C000657245
128 14159-14167 Disease denotes COVID-19 MESH:C000657245
129 14327-14335 Disease denotes COVID-19 MESH:C000657245
132 14809-14813 Species denotes Sina Tax:647292
133 14993-15001 Disease denotes COVID-19 MESH:C000657245
135 15536-15544 Disease denotes COVID-19 MESH:C000657245
137 16084-16092 Disease denotes COVID-19 MESH:C000657245
143 17403-17409 Species denotes People Tax:9606
144 16819-16827 Disease denotes COVID-19 MESH:C000657245
145 16923-16931 Disease denotes COVID-19 MESH:C000657245
146 17074-17082 Disease denotes COVID-19 MESH:C000657245
147 17475-17483 Disease denotes COVID-19 MESH:C000657245
150 20962-20968 Species denotes People Tax:9606
151 20892-20900 Disease denotes COVID-19 MESH:C000657245
157 22527-22533 Species denotes People Tax:9606
158 22050-22058 Disease denotes COVID-19 MESH:C000657245
159 22307-22315 Disease denotes COVID-19 MESH:C000657245
160 22456-22464 Disease denotes COVID-19 MESH:C000657245
161 22559-22567 Disease denotes COVID-19 MESH:C000657245
163 23394-23396 Gene denotes β1 Gene:597
165 24569-24577 Disease denotes COVID-19 MESH:C000657245
169 25985-25989 Gene denotes post Gene:159371
170 24834-24842 Disease denotes COVID-19 MESH:C000657245
171 25020-25028 Disease denotes COVID-19 MESH:C000657245
175 27547-27551 Gene denotes post Gene:159371
176 26415-26423 Disease denotes COVID-19 MESH:C000657245
177 27332-27340 Disease denotes COVID-19 MESH:C000657245
180 28787-28792 Chemical denotes CIPHT
181 29039-29044 Chemical denotes CIPHT
184 30036-30044 Disease denotes COVID-19 MESH:C000657245
185 30310-30318 Disease denotes COVID-19 MESH:C000657245
187 30817-30830 Disease denotes Falsification
192 30897-30910 Disease denotes falsification
193 31138-31146 Disease denotes COVID-19 MESH:C000657245
194 31208-31216 Disease denotes COVID-19 MESH:C000657245
195 31489-31497 Disease denotes COVID-19 MESH:C000657245
205 32333-32341 Species denotes EMIGRANT Tax:320267
206 32466-32474 Species denotes EMIGRANT Tax:320267
207 32538-32547 Species denotes emigrants Tax:320267
208 32560-32569 Species denotes emigrants Tax:320267
209 32747-32755 Species denotes emigrant Tax:320267
210 32862-32867 Species denotes human Tax:9606
211 33188-33196 Species denotes EMIGRANT Tax:320267
212 33063-33068 Chemical denotes CIPHT
213 32784-32792 Disease denotes COVID-19 MESH:C000657245
218 33808-33811 Gene denotes H2b Gene:8349
219 34332-34335 Gene denotes H2b Gene:8349
220 33800-33803 Gene denotes H2a Gene:113457
221 34324-34327 Gene denotes H2a Gene:113457
226 34605-34608 Gene denotes H2a Gene:113457
227 35681-35684 Gene denotes H2a Gene:113457
228 36035-36038 Gene denotes H2a Gene:113457
229 35887-35890 Gene denotes H2a Gene:113457
234 36391-36394 Gene denotes H2b Gene:8349
235 37442-37445 Gene denotes H2b Gene:8349
236 37648-37651 Gene denotes H2b Gene:8349
237 37796-37799 Gene denotes H2b Gene:8349
242 38973-38978 Chemical denotes CIPHT
243 38984-38989 Chemical denotes CDPHT
244 38580-38588 Disease denotes COVID-19 MESH:C000657245
245 39185-39193 Disease denotes COVID-19 MESH:C000657245
247 39522-39526 Gene denotes Post Gene:159371
254 40215-40219 Gene denotes POST Gene:159371
255 40195-40199 Gene denotes POST Gene:159371
256 40095-40099 Gene denotes post Gene:159371
257 39648-39653 Species denotes human Tax:9606
258 39581-39589 Disease denotes COVID-19 MESH:C000657245
259 39972-39980 Disease denotes COVID-19 MESH:C000657245
261 40769-40772 Gene denotes 6.3 Gene:55558
263 41301-41309 Disease denotes COVID-19 MESH:C000657245
265 43100-43108 Disease denotes COVID-19 MESH:C000657245
269 43248-43256 Disease denotes COVID-19 MESH:C000657245
270 43597-43605 Disease denotes COVID-19 MESH:C000657245
271 43780-43788 Disease denotes COVID-19 MESH:C000657245
274 44074-44082 Disease denotes COVID-19 MESH:C000657245
275 44206-44214 Disease denotes COVID-19 MESH:C000657245
277 44679-44687 Disease denotes COVID-19 MESH:C000657245
279 45801-45809 Disease denotes COVID-19 MESH:C000657245
281 46505-46513 Disease denotes COVID-19 MESH:C000657245
284 46709-46717 Disease denotes COVID-19 MESH:C000657245
285 47191-47199 Disease denotes COVID-19 MESH:C000657245
287 47707-47715 Disease denotes COVID-19 MESH:C000657245
289 48295-48303 Disease denotes COVID-19 MESH:C000657245
306 54787-54791 Gene denotes POST Gene:159371
307 51328-51332 Gene denotes post Gene:159371
308 52487-52495 Species denotes EMIGRANT Tax:320267
309 52568-52577 Species denotes emigrants Tax:320267
310 52590-52599 Species denotes emigrants Tax:320267
311 53091-53098 Species denotes persons Tax:9606
312 53499-53506 Species denotes persons Tax:9606
313 54331-54338 Species denotes persons Tax:9606
314 55101-55108 Species denotes persons Tax:9606
315 51031-51039 Disease denotes COVID-19 MESH:C000657245
316 51625-51633 Disease denotes COVID-19 MESH:C000657245
317 51888-51896 Disease denotes COVID-19 MESH:C000657245
318 52153-52161 Disease denotes COVID-19 MESH:C000657245
319 54091-54099 Disease denotes COVID-19 MESH:C000657245
320 55048-55056 Disease denotes COVID-19 MESH:C000657245
321 55317-55325 Disease denotes COVID-19 MESH:C000657245
408 63614-63619 Chemical denotes CIPHT
409 63626-63631 Chemical denotes CIPHT
410 64204-64209 Chemical denotes water MESH:D014867
411 64443-64448 Chemical denotes Water MESH:D014867
415 69698-69719 Chemical denotes CAR [−1, 1] CAR [−1,
416 69724-69761 Chemical denotes CAR [−2, 2] CAR [−2, 2] CAR [−2, 2]
417 69791-69796 Chemical denotes CIPHT
419 73110-73123 Disease denotes Falsification
421 75135-75143 Species denotes EMIGRANT Tax:320267
424 83364-83440 Chemical denotes CAR [−1, 1] CAR [−1, 1] CAR [−1, 1] CAR [−2, 2] CAR [−2, 2] CAR [−2, 2]
425 83470-83475 Chemical denotes CIPHT
428 78409-78485 Chemical denotes CAR [−1, 1] CAR [−1, 1] CAR [−1, 1] CAR [−2, 2] CAR [−2, 2] CAR [−2, 2]
429 78516-78521 Chemical denotes CIPHT
432 81092-81118 Chemical denotes CAR [−1, 1] CAR [−2, 2] (
433 81126-81131 Chemical denotes CDPHT
436 82314-82318 Gene denotes POST Gene:159371
437 82261-82265 Gene denotes POST Gene:159371
440 83364-83440 Chemical denotes CAR [−1, 1] CAR [−1, 1] CAR [−1, 1] CAR [−2, 2] CAR [−2, 2] CAR [−2, 2]
441 83470-83475 Chemical denotes CIPHT
443 86143-86151 Disease denotes COVID-19 MESH:C000657245