PMC:7573174 / 1026-3066 JSONTXT

Annnotations TAB JSON ListView MergeView

    2_test

    {"project":"2_test","denotations":[{"id":"33088250-11592996-29803028","span":{"begin":1006,"end":1007},"obj":"11592996"},{"id":"33088250-16506785-29803029","span":{"begin":1028,"end":1031},"obj":"16506785"},{"id":"33088250-20192778-29803030","span":{"begin":1446,"end":1447},"obj":"20192778"},{"id":"33088250-29794031-29803031","span":{"begin":1664,"end":1666},"obj":"29794031"},{"id":"33088250-4900062-29803032","span":{"begin":1930,"end":1931},"obj":"4900062"}],"text":"Covalent and noncovalent interactions are the two main categories of forces that hold atoms together. Unlike relatively strong covalent bonds that arise from sharing electrons, noncovalent interactions consist of weaker forces, such as ionic bonds, hydrogen bonds, Van der Waals interactions, and hydrophobic interactions. Noncovalent interactions, conferring reversibility to macromolecules, drive the formation of various cellular compartments and participate in numerous biological processes. Proteins, requiring correct folding to function, are the ultimate examples that rely significantly on noncovalent interactions. Another important consequence of noncovalent interactions is self-assembly. Self-assembly is a thermodynamic process that minimizes the system energy through intermolecular noncovalent interactions, generating well-defined (or ordered) nanostructures, including the characteristic nanofibers, along with nanofilaments, nanodiscs, nanorods, and nanoribbons, etc (Aggeli et al., 2001[1]; Yang et al., 2006[106]). Thus, noncovalent interactions are an inherent feature of life. Moreover, noncovalent interactions are dynamic. For example, the association and dissociation of ADP and ATP with actins modulate the dynamic equilibrium between globular actin (G-actin) and filamentous actin (F-actin), regulating cellular functions such as endocytosis, mitosis, mitochondria dynamics, and cell migration (Bugyi and Carlier, 2010[6]). The supramolecular polymerization of α-tubulins and β-tubulins leads to the formation of microtubules, which are the essential components of centrosomes, spindle fibers, cilia, and flagella (Mclntosh et al., 2018[64]). Not surprisingly, these assembly and disassembly processes involve enzymatic reactions. Being highly specific and efficient, enzymes are unique biomacromolecules that catalyze fundamental chemical reactions, like respiration and photosynthesis (Atkinson, 1969[4]). The omnipresent enzymes and continuously ongoing enzymatic reactions represent another attribute of life."}

    MyTest

    {"project":"MyTest","denotations":[{"id":"33088250-11592996-29803028","span":{"begin":1006,"end":1007},"obj":"11592996"},{"id":"33088250-16506785-29803029","span":{"begin":1028,"end":1031},"obj":"16506785"},{"id":"33088250-20192778-29803030","span":{"begin":1446,"end":1447},"obj":"20192778"},{"id":"33088250-29794031-29803031","span":{"begin":1664,"end":1666},"obj":"29794031"},{"id":"33088250-4900062-29803032","span":{"begin":1930,"end":1931},"obj":"4900062"}],"namespaces":[{"prefix":"_base","uri":"https://www.uniprot.org/uniprot/testbase"},{"prefix":"UniProtKB","uri":"https://www.uniprot.org/uniprot/"},{"prefix":"uniprot","uri":"https://www.uniprot.org/uniprotkb/"}],"text":"Covalent and noncovalent interactions are the two main categories of forces that hold atoms together. Unlike relatively strong covalent bonds that arise from sharing electrons, noncovalent interactions consist of weaker forces, such as ionic bonds, hydrogen bonds, Van der Waals interactions, and hydrophobic interactions. Noncovalent interactions, conferring reversibility to macromolecules, drive the formation of various cellular compartments and participate in numerous biological processes. Proteins, requiring correct folding to function, are the ultimate examples that rely significantly on noncovalent interactions. Another important consequence of noncovalent interactions is self-assembly. Self-assembly is a thermodynamic process that minimizes the system energy through intermolecular noncovalent interactions, generating well-defined (or ordered) nanostructures, including the characteristic nanofibers, along with nanofilaments, nanodiscs, nanorods, and nanoribbons, etc (Aggeli et al., 2001[1]; Yang et al., 2006[106]). Thus, noncovalent interactions are an inherent feature of life. Moreover, noncovalent interactions are dynamic. For example, the association and dissociation of ADP and ATP with actins modulate the dynamic equilibrium between globular actin (G-actin) and filamentous actin (F-actin), regulating cellular functions such as endocytosis, mitosis, mitochondria dynamics, and cell migration (Bugyi and Carlier, 2010[6]). The supramolecular polymerization of α-tubulins and β-tubulins leads to the formation of microtubules, which are the essential components of centrosomes, spindle fibers, cilia, and flagella (Mclntosh et al., 2018[64]). Not surprisingly, these assembly and disassembly processes involve enzymatic reactions. Being highly specific and efficient, enzymes are unique biomacromolecules that catalyze fundamental chemical reactions, like respiration and photosynthesis (Atkinson, 1969[4]). The omnipresent enzymes and continuously ongoing enzymatic reactions represent another attribute of life."}