PMC:7556614 / 43647-45248 JSONTXT

Annnotations TAB JSON ListView MergeView

{"target":"http://pubannotation.org/docs/sourcedb/PMC/sourceid/7556614","sourcedb":"PMC","sourceid":"7556614","source_url":"https://www.ncbi.nlm.nih.gov/pmc/7556614","text":"CONCLUSION\nPEGylated lecithin-chitosan nanoparticle–encapsulated acyclovir were successfully formulated with particle size less than 200 nm, optimum PDI, entrapment efficiency greater than 80%, and with positive zeta potential value greater than + 30 mV. SEM and HRTEM images showed the spherical structure of the nanoparticle. FTIR analysis with the diminishment of all ACV characteristic peaks in formulation spectrum indicates its encapsulation. DSC thermogram depicted a left shift, evidencing acyclovir’s state changes from crystalline to amorphous property. The obtained results is further proved by the presence of a broad peak of PALN1 and diminishment of ACV crystalline peak in XRD diffractogram. In vitro release profile of ACV in nanoparticles had shown 24-h sustained release following Higuchi model with non-Fickian mechanism in both SGF and SIF. Ex vivo permeation study displayed a 3.2-fold improvement for acyclovir’s apparent permeability. The formulation was stable up to 60 days from the aspect of particle size. The results demonstrated the ability of PEGylated lecithin-chitosan nanoparticles not only in providing high encapsulation of ACV and 24-h sustained release profile in both SGF and SIF, but also in enhancing the permeability of ACV. These findings suggested that PEGylated lecithin-chitosan nanoparticles may be used for drugs with poor aqueous solubility and permeability. Further, study on in vivo performance should be conducted to assess the improvement in oral bioavailability of ACV, as well as the applicability of this formulation on other BCS class III drugs.","divisions":[{"label":"title","span":{"begin":0,"end":10}}],"tracks":[]}