PMC:7556614 / 27119-29214 JSONTXT

Annnotations TAB JSON ListView MergeView

{"target":"http://pubannotation.org/docs/sourcedb/PMC/sourceid/7556614","sourcedb":"PMC","sourceid":"7556614","source_url":"https://www.ncbi.nlm.nih.gov/pmc/7556614","text":"Zeta Potential Measurements\nZeta potential for all formulations was determined and tabulated in Table IV as observed values. Figure 2 b showed the graphical presentation of zeta potential measurement for 17 formulations. The zeta potential ranged from + 20.77 ± 5.59 to + 50.47 47 ± 1.65 mV. The zeta potential was mainly determined by lecithin and chitosan used. However, PEG 2000 as a polymer grafting on the lecithin-chitosan core-shell structure might be impacting the stability of the nanoparticle. The values can be used as an indicator that all the prepared hybrid nanoparticle formulations were highly stable. Using Design-Expert software, the relationship between the used amount of lecithin, chitosan, and PEG 2000 on zeta potential can be explained using Eq. (10) with a high R2 value of 0.9294.10 Y2=28.09–3.57X1+8.68X2–7.16X3+0.42X1X2+1.83X1X3+2.08X2X3+1.51X12+6.7X22+1.84X32\nFigure 3 d showed positive linear relationship between zeta potential and amount of chitosan used for developing the nanoparticles. The relationship was predictable since chitosan dissolves in an aqueous solvent, exhibiting net positive charges due to the protonated amine group (30). When the amount of lecithin used decreases, the zeta potential increases, proving that negatively charged lecithin had reacted with positively charged chitosan, producing a negative effect on zeta potential. The same trend can be seen in Fig. 3 e, where PEG 2000 with a surface charge of − 2 to − 7 mV also had a negative effect on zeta potential, but to a lower extent to that of lecithin (32). It can be seen that chitosan was capable of producing formulation with zeta potential greater than 50 mV. Still, the use of PEG 2000 and lecithin, or to be exact, the electrostatic interaction between chitosan and other components, causes the reduction of zeta potential. Figure 3 f further supported the point that lecithin and PEG 2000 were responsible for zeta potential decrement. When a higher proportion of PEG2000 (40 mg) and lecithin (300 mg) was used, the zeta potential significantly decreases in the nanoparticles.","divisions":[{"label":"title","span":{"begin":0,"end":27}},{"label":"p","span":{"begin":28,"end":888}},{"label":"label","span":{"begin":806,"end":808}}],"tracks":[]}