> top > docs > PMC:7510993 > spans > 13206-30779 > annotations

PMC:7510993 / 13206-30779 JSONTXT

Annnotations TAB JSON ListView MergeView

LitCovid-PD-FMA-UBERON

Id Subject Object Predicate Lexical cue fma_id
T5 921-924 Body_part denotes map http://purl.org/sig/ont/fma/fma67847
T6 2895-2898 Body_part denotes map http://purl.org/sig/ont/fma/fma67847
T7 4214-4218 Body_part denotes dens http://purl.org/sig/ont/fma/fma24043
T8 4397-4401 Body_part denotes axis http://purl.org/sig/ont/fma/fma12520
T9 12880-12883 Body_part denotes map http://purl.org/sig/ont/fma/fma67847

LitCovid-PD-UBERON

Id Subject Object Predicate Lexical cue uberon_id
T2 11814-11819 Body_part denotes scale http://purl.obolibrary.org/obo/UBERON_0002542
T3 12116-12121 Body_part denotes scale http://purl.obolibrary.org/obo/UBERON_0002542
T4 12233-12238 Body_part denotes scale http://purl.obolibrary.org/obo/UBERON_0002542
T5 12381-12386 Body_part denotes scale http://purl.obolibrary.org/obo/UBERON_0002542

LitCovid-PD-MONDO

Id Subject Object Predicate Lexical cue mondo_id
T69 23-31 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T70 381-389 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T71 468-476 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T72 546-554 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T73 679-687 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T74 867-875 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T75 1046-1054 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T76 1248-1250 Disease denotes TS http://purl.obolibrary.org/obo/MONDO_0010979|http://purl.obolibrary.org/obo/MONDO_0016455
T78 1373-1375 Disease denotes WS http://purl.obolibrary.org/obo/MONDO_0010196
T79 1493-1501 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T80 1668-1676 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T81 1856-1864 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T82 1999-2007 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T83 2244-2252 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T84 2319-2327 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T85 2426-2434 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T86 2499-2507 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T87 2595-2603 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T88 2670-2678 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T89 2777-2785 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T90 2850-2858 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T91 3006-3014 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T92 3150-3158 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T93 3380-3388 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T94 3451-3459 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T95 3658-3666 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T96 3901-3909 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T97 4495-4502 Disease denotes Malaria http://purl.obolibrary.org/obo/MONDO_0005136
T98 4513-4520 Disease denotes malaria http://purl.obolibrary.org/obo/MONDO_0005136
T99 4887-4889 Disease denotes R2 http://purl.obolibrary.org/obo/MONDO_0019903
T100 5207-5209 Disease denotes R2 http://purl.obolibrary.org/obo/MONDO_0019903
T101 5232-5240 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T102 5587-5595 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T103 5757-5765 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T104 6070-6072 Disease denotes R2 http://purl.obolibrary.org/obo/MONDO_0019903
T105 6134-6142 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T106 6786-6794 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T107 7050-7058 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T108 7157-7164 Disease denotes malaria http://purl.obolibrary.org/obo/MONDO_0005136
T109 7245-7253 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T110 7361-7369 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T111 7648-7656 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T112 7754-7762 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T113 7846-7854 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T114 7963-7971 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T115 8108-8116 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T116 8335-8343 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T117 8623-8631 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T118 8681-8688 Disease denotes malaria http://purl.obolibrary.org/obo/MONDO_0005136
T119 8921-8929 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T120 9134-9142 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T121 9354-9362 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T122 9562-9570 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T123 9613-9621 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T124 9763-9771 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T125 9893-9901 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T126 10080-10088 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T127 10161-10168 Disease denotes malaria http://purl.obolibrary.org/obo/MONDO_0005136
T128 10188-10196 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T129 10359-10367 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T130 10511-10519 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T131 10630-10638 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T132 10726-10733 Disease denotes malaria http://purl.obolibrary.org/obo/MONDO_0005136
T133 10870-10878 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T134 11105-11113 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T135 11258-11266 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T136 11332-11340 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T137 11392-11400 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T138 11429-11437 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T139 11730-11738 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T140 11863-11872 Disease denotes infection http://purl.obolibrary.org/obo/MONDO_0005550
T141 12065-12073 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T142 12186-12194 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T143 12247-12257 Disease denotes infections http://purl.obolibrary.org/obo/MONDO_0005550
T144 12452-12460 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T145 12526-12534 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T146 12550-12558 Disease denotes SARS-CoV http://purl.obolibrary.org/obo/MONDO_0005091
T147 12756-12764 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T148 13053-13063 Disease denotes infections http://purl.obolibrary.org/obo/MONDO_0005550
T149 13089-13097 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T150 13217-13225 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T151 13310-13318 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T152 13406-13414 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T153 13519-13527 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T154 13594-13602 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T155 13697-13705 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T156 13770-13778 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T157 13862-13870 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T158 13937-13945 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T159 14044-14052 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T160 14117-14125 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T161 14973-14980 Disease denotes malaria http://purl.obolibrary.org/obo/MONDO_0005136
T162 15200-15208 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T163 15240-15249 Disease denotes infection http://purl.obolibrary.org/obo/MONDO_0005550
T164 15440-15448 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T165 15480-15489 Disease denotes infection http://purl.obolibrary.org/obo/MONDO_0005550
T166 15625-15633 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T167 15665-15674 Disease denotes infection http://purl.obolibrary.org/obo/MONDO_0005550
T168 15873-15881 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T169 15913-15922 Disease denotes infection http://purl.obolibrary.org/obo/MONDO_0005550
T170 16061-16068 Disease denotes malaria http://purl.obolibrary.org/obo/MONDO_0005136
T171 16155-16163 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T172 16327-16335 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T173 16451-16459 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T174 16517-16525 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T175 16526-16535 Disease denotes infection http://purl.obolibrary.org/obo/MONDO_0005550
T176 16744-16752 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T177 16972-16980 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T178 17147-17155 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T179 17266-17274 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T180 17343-17351 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096

LitCovid-PD-CLO

Id Subject Object Predicate Lexical cue
T52 185-187 http://purl.obolibrary.org/obo/CLO_0001022 denotes Li
T53 185-187 http://purl.obolibrary.org/obo/CLO_0007314 denotes Li
T54 209-211 http://purl.obolibrary.org/obo/CLO_0050050 denotes S1
T55 323-325 http://purl.obolibrary.org/obo/CLO_0008922 denotes S2
T56 323-325 http://purl.obolibrary.org/obo/CLO_0050052 denotes S2
T57 501-503 http://purl.obolibrary.org/obo/CLO_0050050 denotes S1
T58 628-629 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T59 715-716 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T60 738-739 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T61 969-970 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T62 1287-1289 http://purl.obolibrary.org/obo/CLO_0009287 denotes TE
T63 1451-1453 http://purl.obolibrary.org/obo/CLO_0009445 denotes TU
T64 1617-1618 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T65 1704-1705 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T66 1727-1728 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T67 2183-2184 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T68 2185-2191 http://www.ebi.ac.uk/efo/EFO_0000265 denotes D): (A
T69 2198-2199 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T70 2220-2221 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T71 2361-2362 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T72 2369-2370 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T73 2571-2572 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T74 2943-2944 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T75 3615-3620 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T76 3945-3946 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T77 4012-4013 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T78 4035-4036 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T79 4928-4929 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T80 5140-5142 http://purl.obolibrary.org/obo/CLO_0008922 denotes S2
T81 5140-5142 http://purl.obolibrary.org/obo/CLO_0050052 denotes S2
T82 5544-5549 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T83 5715-5720 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T84 5822-5827 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T85 5915-5920 http://purl.obolibrary.org/obo/NCBITaxon_10239 denotes virus
T86 6215-6216 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T87 6281-6282 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T88 7504-7505 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T89 8520-8522 http://purl.obolibrary.org/obo/CLO_0008922 denotes S2
T90 8520-8522 http://purl.obolibrary.org/obo/CLO_0050052 denotes S2
T91 8581-8586 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T92 8930-8935 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tests
T93 8939-8940 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T94 9091-9096 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T95 9255-9262 http://purl.obolibrary.org/obo/UBERON_0000473 denotes testing
T96 9494-9499 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T97 9510-9512 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T98 9576-9583 http://purl.obolibrary.org/obo/UBERON_0000982 denotes jointly
T99 9576-9583 http://purl.obolibrary.org/obo/UBERON_0004905 denotes jointly
T100 9734-9735 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T101 9803-9808 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T102 9825-9828 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T103 9941-9942 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T104 10321-10322 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T105 10457-10458 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T106 10689-10690 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T107 10837-10838 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T108 10904-10905 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T109 10952-10958 http://purl.obolibrary.org/obo/NCBITaxon_9005 denotes Turkey
T110 11073-11078 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T111 11290-11295 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T112 11474-11476 http://purl.obolibrary.org/obo/CLO_0008922 denotes S2
T113 11474-11476 http://purl.obolibrary.org/obo/CLO_0050052 denotes S2
T114 11572-11574 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T115 11605-11608 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T116 11616-11617 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T117 11999-12002 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T118 12561-12564 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T119 12928-12929 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T120 12993-12994 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T121 13193-13195 http://purl.obolibrary.org/obo/CLO_0050050 denotes S1
T122 13248-13249 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T123 13473-13474 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T124 13495-13496 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T125 13640-13641 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T126 13838-13839 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T127 14232-14238 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tested
T128 14242-14243 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T129 14277-14281 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T130 14395-14396 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T131 14403-14404 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T132 14459-14460 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T133 14475-14476 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T134 14547-14548 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T135 14561-14562 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T136 14576-14577 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T137 14591-14592 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T138 14658-14661 http://purl.obolibrary.org/obo/CLO_0001178 denotes 243
T139 14658-14661 http://purl.obolibrary.org/obo/CLO_0052433 denotes 243
T140 14706-14707 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T141 14722-14723 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T142 14738-14739 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T143 14754-14755 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T144 14787-14788 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T145 14805-14806 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T146 14823-14824 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T147 14879-14880 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T148 14896-14897 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T149 14913-14914 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T150 14930-14931 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T151 14996-14997 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T152 15013-15014 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T153 15030-15031 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T154 15048-15049 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T155 15108-15109 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T156 15124-15125 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T157 15166-15167 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T158 15345-15350 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T159 15406-15407 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T160 16388-16389 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T161 16439-16446 http://purl.obolibrary.org/obo/UBERON_0000473 denotes testing
T162 16559-16560 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T163 16596-16604 http://purl.obolibrary.org/obo/CLO_0009985 denotes focusing
T164 16671-16672 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T165 16727-16731 http://purl.obolibrary.org/obo/UBERON_0000473 denotes test
T166 16783-16788 http://purl.obolibrary.org/obo/UBERON_0000473 denotes tests
T167 16928-16935 http://purl.obolibrary.org/obo/UBERON_0000473 denotes testing
T168 17230-17235 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T169 17427-17428 http://purl.obolibrary.org/obo/CLO_0001020 denotes a

LitCovid-PD-CHEBI

Id Subject Object Predicate Lexical cue chebi_id
T32 185-187 Chemical denotes Li http://purl.obolibrary.org/obo/CHEBI_30145
T33 323-325 Chemical denotes S2 http://purl.obolibrary.org/obo/CHEBI_29387
T34 907-909 Chemical denotes S3 http://purl.obolibrary.org/obo/CHEBI_29388
T35 1221-1223 Chemical denotes TR http://purl.obolibrary.org/obo/CHEBI_74825
T36 1248-1250 Chemical denotes TS http://purl.obolibrary.org/obo/CHEBI_73664
T37 1287-1289 Chemical denotes TE http://purl.obolibrary.org/obo/CHEBI_74857
T38 1315-1317 Chemical denotes SD http://purl.obolibrary.org/obo/CHEBI_74807
T39 1340-1342 Chemical denotes TD http://purl.obolibrary.org/obo/CHEBI_74854
T40 1373-1375 Chemical denotes WS http://purl.obolibrary.org/obo/CHEBI_73694
T41 1398-1400 Chemical denotes TG http://purl.obolibrary.org/obo/CHEBI_74859|http://purl.obolibrary.org/obo/CHEBI_9555
T43 1431-1433 Chemical denotes BF http://purl.obolibrary.org/obo/CHEBI_34565
T44 1944-1946 Chemical denotes S4 http://purl.obolibrary.org/obo/CHEBI_29401
T45 4301-4304 Chemical denotes GDP http://purl.obolibrary.org/obo/CHEBI_17552|http://purl.obolibrary.org/obo/CHEBI_58189
T47 4341-4344 Chemical denotes BCG http://purl.obolibrary.org/obo/CHEBI_41001
T48 4346-4349 Chemical denotes BCG http://purl.obolibrary.org/obo/CHEBI_41001
T49 4393-4396 Chemical denotes PCA http://purl.obolibrary.org/obo/CHEBI_36751|http://purl.obolibrary.org/obo/CHEBI_62248
T51 4440-4443 Chemical denotes BCG http://purl.obolibrary.org/obo/CHEBI_41001
T52 5140-5142 Chemical denotes S2 http://purl.obolibrary.org/obo/CHEBI_29387
T53 5463-5465 Chemical denotes 5B http://purl.obolibrary.org/obo/CHEBI_27560
T54 5646-5648 Chemical denotes 5B http://purl.obolibrary.org/obo/CHEBI_27560
T55 6885-6887 Chemical denotes 6C http://purl.obolibrary.org/obo/CHEBI_27594
T56 6964-6967 Chemical denotes GDP http://purl.obolibrary.org/obo/CHEBI_17552|http://purl.obolibrary.org/obo/CHEBI_58189
T58 7129-7132 Chemical denotes BCG http://purl.obolibrary.org/obo/CHEBI_41001
T59 8520-8522 Chemical denotes S2 http://purl.obolibrary.org/obo/CHEBI_29387
T60 8653-8656 Chemical denotes BCG http://purl.obolibrary.org/obo/CHEBI_41001
T61 9040-9042 Chemical denotes S3 http://purl.obolibrary.org/obo/CHEBI_29388
T62 10136-10139 Chemical denotes BCG http://purl.obolibrary.org/obo/CHEBI_41001
T63 10243-10247 Chemical denotes drug http://purl.obolibrary.org/obo/CHEBI_23888
T64 10491-10494 Chemical denotes BCG http://purl.obolibrary.org/obo/CHEBI_41001
T65 10772-10775 Chemical denotes BCG http://purl.obolibrary.org/obo/CHEBI_41001
T66 10906-10909 Chemical denotes BCG http://purl.obolibrary.org/obo/CHEBI_41001
T67 11474-11476 Chemical denotes S2 http://purl.obolibrary.org/obo/CHEBI_29387
T68 11481-11483 Chemical denotes S4 http://purl.obolibrary.org/obo/CHEBI_29401
T69 14756-14759 Chemical denotes GDP http://purl.obolibrary.org/obo/CHEBI_17552|http://purl.obolibrary.org/obo/CHEBI_58189
T71 14841-14844 Chemical denotes BCG http://purl.obolibrary.org/obo/CHEBI_41001
T72 15556-15559 Chemical denotes BCG http://purl.obolibrary.org/obo/CHEBI_41001
T73 15813-15816 Chemical denotes BCG http://purl.obolibrary.org/obo/CHEBI_41001
T74 16089-16092 Chemical denotes BCG http://purl.obolibrary.org/obo/CHEBI_41001
T75 17080-17088 Chemical denotes carriers http://purl.obolibrary.org/obo/CHEBI_78059
T76 17502-17513 Chemical denotes application http://purl.obolibrary.org/obo/CHEBI_33232

LitCovid-PubTator

Id Subject Object Predicate Lexical cue tao:has_database_id
195 23-31 Disease denotes COVID-19 MESH:C000657245
196 381-389 Disease denotes COVID-19 MESH:C000657245
197 468-476 Disease denotes COVID-19 MESH:C000657245
199 546-554 Disease denotes COVID-19 MESH:C000657245
202 679-687 Disease denotes COVID-19 MESH:C000657245
203 867-875 Disease denotes COVID-19 MESH:C000657245
205 1046-1054 Disease denotes COVID-19 MESH:C000657245
210 1221-1223 Gene denotes TR Gene:2149
211 1493-1501 Disease denotes COVID-19 MESH:C000657245
212 1668-1676 Disease denotes COVID-19 MESH:C000657245
213 1856-1864 Disease denotes COVID-19 MESH:C000657245
215 1999-2007 Disease denotes COVID-19 MESH:C000657245
224 2244-2252 Disease denotes COVID-19 MESH:C000657245
225 2319-2327 Disease denotes COVID-19 MESH:C000657245
226 2426-2434 Disease denotes COVID-19 MESH:C000657245
227 2499-2507 Disease denotes COVID-19 MESH:C000657245
228 2595-2603 Disease denotes COVID-19 MESH:C000657245
229 2670-2678 Disease denotes COVID-19 MESH:C000657245
230 2777-2785 Disease denotes COVID-19 MESH:C000657245
231 2850-2858 Disease denotes COVID-19 MESH:C000657245
238 3615-3620 Species denotes human Tax:9606
239 3006-3014 Disease denotes COVID-19 MESH:C000657245
240 3150-3158 Disease denotes COVID-19 MESH:C000657245
241 3380-3388 Disease denotes COVID-19 MESH:C000657245
242 3451-3459 Disease denotes COVID-19 MESH:C000657245
243 3658-3666 Disease denotes COVID-19 MESH:C000657245
245 3901-3909 Disease denotes COVID-19 MESH:C000657245
251 4341-4344 Species denotes BCG Tax:33892
252 4346-4349 Species denotes BCG Tax:33892
253 4440-4443 Species denotes BCG Tax:33892
254 4495-4502 Disease denotes Malaria MESH:D008288
255 4513-4520 Disease denotes malaria MESH:D008288
262 5544-5549 Species denotes human Tax:9606
263 5715-5720 Species denotes human Tax:9606
264 5822-5827 Species denotes human Tax:9606
265 5232-5240 Disease denotes COVID-19 MESH:C000657245
266 5587-5595 Disease denotes COVID-19 MESH:C000657245
267 5757-5765 Disease denotes COVID-19 MESH:C000657245
269 6134-6142 Disease denotes COVID-19 MESH:C000657245
281 7129-7132 Species denotes BCG Tax:33892
282 6964-6967 Chemical denotes GDP MESH:D006153
283 6786-6794 Disease denotes COVID-19 MESH:C000657245
284 7050-7058 Disease denotes COVID-19 MESH:C000657245
285 7157-7164 Disease denotes malaria MESH:D008288
286 7245-7253 Disease denotes COVID-19 MESH:C000657245
287 7361-7369 Disease denotes COVID-19 MESH:C000657245
288 7648-7656 Disease denotes COVID-19 MESH:C000657245
289 7754-7762 Disease denotes COVID-19 MESH:C000657245
290 7846-7854 Disease denotes COVID-19 MESH:C000657245
291 7963-7971 Disease denotes COVID-19 MESH:C000657245
293 8108-8116 Disease denotes COVID-19 MESH:C000657245
295 8335-8343 Disease denotes COVID-19 MESH:C000657245
304 8581-8586 Species denotes human Tax:9606
305 9091-9096 Species denotes human Tax:9606
306 8653-8656 Species denotes BCG Tax:33892
307 8623-8631 Disease denotes COVID-19 MESH:C000657245
308 8681-8688 Disease denotes malaria MESH:D008288
309 8921-8929 Disease denotes COVID-19 MESH:C000657245
310 9134-9142 Disease denotes COVID-19 MESH:C000657245
311 9354-9362 Disease denotes COVID-19 MESH:C000657245
316 11073-11078 Species denotes human Tax:9606
317 11332-11340 Disease denotes COVID-19 MESH:C000657245
335 9803-9808 Species denotes human Tax:9606
336 10952-10958 Species denotes Turkey Tax:9103
337 10136-10139 Species denotes BCG Tax:33892
338 10491-10494 Species denotes BCG Tax:33892
339 10772-10775 Species denotes BCG Tax:33892
340 10906-10909 Species denotes BCG Tax:33892
341 9893-9901 Disease denotes COVID-19 MESH:C000657245
342 10080-10088 Disease denotes COVID-19 MESH:C000657245
343 10161-10168 Disease denotes malaria MESH:D008288
344 10188-10196 Disease denotes COVID-19 MESH:C000657245
345 10359-10367 Disease denotes COVID-19 MESH:C000657245
346 10511-10519 Disease denotes COVID-19 MESH:C000657245
347 10630-10638 Disease denotes COVID-19 MESH:C000657245
348 10726-10733 Disease denotes malaria MESH:D008288
349 10870-10878 Disease denotes COVID-19 MESH:C000657245
359 11290-11295 Species denotes human Tax:9606
360 11105-11113 Disease denotes COVID-19 MESH:C000657245
361 11258-11266 Disease denotes COVID-19 MESH:C000657245
363 11392-11400 Disease denotes COVID-19 MESH:C000657245
364 11429-11437 Disease denotes COVID-19 MESH:C000657245
365 11730-11738 Disease denotes COVID-19 MESH:C000657245
373 12550-12560 Species denotes SARS-CoV-2 Tax:2697049
374 11863-11872 Disease denotes infection MESH:D007239
375 12065-12073 Disease denotes COVID-19 MESH:C000657245
376 12186-12194 Disease denotes COVID-19 MESH:C000657245
377 12247-12257 Disease denotes infections MESH:D007239
378 12452-12460 Disease denotes COVID-19 MESH:C000657245
379 12526-12534 Disease denotes COVID-19 MESH:C000657245
381 12756-12764 Disease denotes COVID-19 MESH:C000657245
385 13053-13063 Disease denotes infections MESH:D007239
386 13089-13097 Disease denotes COVID-19 MESH:C000657245
387 13217-13225 Disease denotes COVID-19 MESH:C000657245
393 14954-14960 Species denotes people Tax:9606
394 15072-15078 Species denotes people Tax:9606
395 14841-14844 Species denotes BCG Tax:33892
396 14961-14969 Disease denotes infected MESH:D007239
397 14973-14980 Disease denotes malaria MESH:D008288
399 13310-13318 Disease denotes COVID-19 MESH:C000657245
409 13406-13414 Disease denotes COVID-19 MESH:C000657245
410 13519-13527 Disease denotes COVID-19 MESH:C000657245
411 13594-13602 Disease denotes COVID-19 MESH:C000657245
412 13697-13705 Disease denotes COVID-19 MESH:C000657245
413 13770-13778 Disease denotes COVID-19 MESH:C000657245
414 13862-13870 Disease denotes COVID-19 MESH:C000657245
415 13937-13945 Disease denotes COVID-19 MESH:C000657245
416 14044-14052 Disease denotes COVID-19 MESH:C000657245
417 14117-14125 Disease denotes COVID-19 MESH:C000657245
433 15345-15350 Species denotes human Tax:9606
434 15556-15559 Species denotes BCG Tax:33892
435 15813-15816 Species denotes BCG Tax:33892
436 16089-16092 Species denotes BCG Tax:33892
437 15200-15208 Disease denotes COVID-19 MESH:C000657245
438 15240-15249 Disease denotes infection MESH:D007239
439 15440-15448 Disease denotes COVID-19 MESH:C000657245
440 15480-15489 Disease denotes infection MESH:D007239
441 15625-15633 Disease denotes COVID-19 MESH:C000657245
442 15665-15674 Disease denotes infection MESH:D007239
443 15873-15881 Disease denotes COVID-19 MESH:C000657245
444 15913-15922 Disease denotes infection MESH:D007239
445 16061-16068 Disease denotes malaria MESH:D008288
446 16155-16163 Disease denotes COVID-19 MESH:C000657245
447 16327-16335 Disease denotes COVID-19 MESH:C000657245
459 16627-16634 Species denotes persons Tax:9606
460 16981-16989 Species denotes patients Tax:9606
461 17230-17235 Species denotes human Tax:9606
462 16451-16459 Disease denotes COVID-19 MESH:C000657245
463 16517-16525 Disease denotes COVID-19 MESH:C000657245
464 16526-16535 Disease denotes infection MESH:D007239
465 16744-16752 Disease denotes COVID-19 MESH:C000657245
466 16972-16980 Disease denotes COVID-19 MESH:C000657245
467 17147-17155 Disease denotes COVID-19 MESH:C000657245
468 17266-17274 Disease denotes COVID-19 MESH:C000657245
469 17343-17351 Disease denotes COVID-19 MESH:C000657245

LitCovid-PD-GO-BP

Id Subject Object Predicate Lexical cue
T3 3119-3125 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T4 16498-16504 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T5 16673-16694 http://purl.obolibrary.org/obo/GO_0001171 denotes reverse transcription
T6 16681-16694 http://purl.obolibrary.org/obo/GO_0006351 denotes transcription

LitCovid-sentences

Id Subject Object Predicate Lexical cue
T66 0-22 Sentence denotes Results and discussion
T67 23-194 Sentence denotes COVID-19 (as measured by the number of cases per 1 million population) spread rapidly across the globe after it first appeared in Wuhan, China in December, 2019 (Li et al.
T68 195-333 Sentence denotes 2020) (Fig 1; S1 Video), but the outbreak appears to have occurred in particular climates around 8°C and 26°C or biomes (Fig 2; S2 Video).
T69 334-509 Sentence denotes Moreover, the patterns of increasing number of COVID-19 cases per week varied among the countries that are characterized by different COVID-19 spread dates (Fig 3 and S1 Fig).
T70 510-626 Sentence denotes Fig 1 Geographical distribution of COVID-19 cases (per 1 million population) for 1,020 countries/regions worldwide.
T71 627-902 Sentence denotes (A–F) Monthly patterns for the cumulative number of COVID-19 cases on January 31, 2020 (A), February 29, 2020 (B), March 31, 2020 (C), April 30, 2020 (D), May 31, 2020 (E), and June 30, 2020 (F) based on the cumulative number of day-to-day COVID-19 cases since December 2019.
T72 903-916 Sentence denotes See S3 Video.
T73 917-1018 Sentence denotes The map was prepared using shapefile reprinted from a freely available database (GADM; www.gadm.org).
T74 1019-1156 Sentence denotes Fig 2 The distribution of COVID-19 cases across biome types based on the relationship between mean temperature and annual precipitation.
T75 1157-1462 Sentence denotes Biome classification is based on the scheme by Whittaker [20]. (TR) tropical rain forest; (TS) tropical seasonal forest/savanna; (TE) temperate rain forest; (SD) subtropical desert; (TD) temperate deciduous forest; (WS) woodland/shrubland; (TG) temperate grassland/desert; (BF) boreal forest, (TU) tundra.
T76 1463-1891 Sentence denotes Colors indicate the number of COVID-19 cases (per 1 million population) and also contours of climatic regions with ≥1000 cases per 1 million population. (A–F) Monthly patterns for the cumulative number of COVID-19 cases on January 31, 2020 (A), February 29, 2020 (B), March 31, 2020 (C), April 30, 2020 (D), May 31, 2020 (E), and June 30, 2020 (F) based on the cumulative number of day-to-day COVID-19 cases since December 2019.
T77 1892-1939 Sentence denotes Arrows indicate the location of Wuhan in China.
T78 1940-1953 Sentence denotes See S4 Video.
T79 1954-2069 Sentence denotes Fig 3 Patterns for the cumulative number of COVID-19 cases (per 1 million population) in relation to country type.
T80 2070-2890 Sentence denotes Based on the pattern of increasing COFVID-19 case numbers, individual countries were classified into four types (A–D): (A) Type A, countries that had a peak in the number of COVID-19 cases per week before the middle of April and had more than 1,000 COVID-19 cases per 1 million population; (B) type B, countries that exhibited an increase in the number of COVID-19 cases per week after the middle of June and had more than 1,000 COVID-19 cases per 1 million population; (C) type C, countries that had a peak in the number of COVID-19 cases per week before the middle of April and had less than 1,000 COVID-19 cases per 1 million population; (D) type D, countries that exhibited an increase in the number of COVID-19 cases per week after the middle of June and had less than 1,000 COVID-19 cases per 1 million population.
T81 2891-2992 Sentence denotes The map was prepared using shapefile reprinted from a freely available database (GADM; www.gadm.org).
T82 2993-3398 Sentence denotes Although the COVID-19 case numbers may not be suitable for conducting epidemiological analyses, such as modelling the disease growth dynamics, the available COVID-19 case data can be still informative for the implementation of containment and/or suppression measures because the number of the confirmed cases is directly linked to the consumption of medical resources for combatting the COVID-19 pandemic.
T83 3399-3719 Sentence denotes Here, we observed that the cumulative number of the COVID-19 cases (per 1 million population) according to the disease spread progression was significantly correlated with variables related to climate, international human mobility, and host susceptibility to COVID-19, at successive periods since December, 2019 (Fig 4).
T84 3720-3943 Sentence denotes Fig 4 Standardized regression coefficients and the partial coefficient of determination (r2) of each explanatory factor in the regression model explaining the cumulative number of COVID-19 cases (per 1 million population).
T85 3944-4118 Sentence denotes (A–F) Values for the period from December 2019 to January 31, 2020 (A), February 29, 2020 (B), March 31, 2020 (C), April 30, 2020 (D), May 31, 2020 (E), or June 30, 2020 (F).
T86 4119-4635 Sentence denotes Temp, mean temperature; Temp2, squared mean temperature; Prec, mean monthly precipitation; Pop dens, population density; Visitor, relative amount of foreign visitors per population; GDP, gross domestic product per person; BCG, BCG vaccination effect as defined by the first PCA axis summarizing five variables related to BCG vaccination (see the Methods section for details); Malaria, relative malaria incidence; Age, relative proportion of the population aged ≥65 years; First cases, number of days from case onset.
T87 4636-4705 Sentence denotes The regressions were conducted using ordinary least squares analyses.
T88 4706-4774 Sentence denotes Vertical lines represent the 95% confidence intervals of parameters.
T89 4775-4852 Sentence denotes Closed symbols indicate the significance of explanatory variables (p < 0.05).
T90 4853-4927 Sentence denotes The coefficient of determination (R2) for the overall model is also shown.
T91 4928-5299 Sentence denotes A nonlinear modeling analysis was also conducted using the random forest method with the same set of response and explanatory variables and the same covariates; the results of this parallel analysis are shown in S2 Fig. The explanatory power, i.e., coefficient of determination (R2), of the model as the COVID-19 pandemic progressed, reaching >70% in April 2020 (Fig 5A).
T92 5300-5467 Sentence denotes The number of days from case onset had some explanatory power (> 20%) in January, 2020, but this factor quickly lost its influence as the pandemic progressed (Fig 5B).
T93 5468-5650 Sentence denotes As the influence of this factor waned, other variables (related to climate, human mobility, and host susceptibility to COVID-19) exhibited the increasing explanatory powers (Fig 5B).
T94 5651-5784 Sentence denotes After April 2020, the explanatory power of variables related to human mobility and host susceptibility to COVID-19 rapidly decreased.
T95 5785-5869 Sentence denotes After this, the explanatory power of human population and climate factors increased.
T96 5870-6022 Sentence denotes These results demonstrate that the impact of virus dispersability between/within regions was predominant in the beginning stage of the pandemic (Fig 5).
T97 6023-6213 Sentence denotes Fig 5 Coefficients of determination (adjusted R2) of the regression model explaining the cumulative number of COVID-19 cases (per 1 million population) from December, 2019 to June 30, 2020.
T98 6214-6369 Sentence denotes (A) Overall coefficient of determination of the regression model; (B) coefficient of partial determination (r2) for each explanatory variable in the model.
T99 6370-6515 Sentence denotes The results shown are based on data starting from January, 2020, because the number of cases in December 2019 was insufficient for this analysis.
T100 6516-6686 Sentence denotes The standardized regression coefficients of the model greatly changed (from non-significant to significant) over the period from December, 2019 to April 12, 2020 (Fig 6).
T101 6687-6889 Sentence denotes After February, 2020, the mean temperature was negatively correlated with the cumulative number of COVID-19 cases, whereas the mean precipitation was positively correlated with these values (Fig 6A–6C).
T102 6890-7081 Sentence denotes After March, 2020, relative amount of foreign visitors per population and GDP per person were predominantly positively correlated with the cumulative number of COVID-19 cases (Fig 6E and 6F).
T103 7082-7276 Sentence denotes In contrast, since February or March 2020, the BCG vaccination factors and malaria incidence were consistently negatively correlated with the cumulative number of COVID-19 cases (Fig 6G and 6H).
T104 7277-7385 Sentence denotes Population density was slightly positively correlated with the cumulative number of COVID-19 cases (Fig 6D).
T105 7386-7567 Sentence denotes The relative proportion of the population aged ≥65 years was also positively correlated with these values, except for a temporary period where it was negatively correlated (Fig 6I).
T106 7568-7823 Sentence denotes This shift from positive to negative correlation reflects the initial spread of COVID-19 in developed countries with relatively older population and the later (after May 2020) spread of COVID-19 in developing countries with relatively younger populations.
T107 7824-7987 Sentence denotes In the early stage of COVID-19 spread, the number of days from case onset was strongly positively correlated with the cumulative number of COVID-19 cases (Fig 6J).
T108 7988-8186 Sentence denotes Fig 6 Time-series pattern of the standardized regression coefficients of the model explaining the cumulative number of COVID-19 cases (per 1 million population) from December 2019 to June 30, 2020.
T109 8187-8255 Sentence denotes Vertical lines represent the 95% confidence intervals of parameters.
T110 8256-8402 Sentence denotes The results are based on data starting from January 2020 because the number of COVID-19 cases in December 2019 was insufficient for this analysis.
T111 8403-8528 Sentence denotes The results of the random forest model were generally consistent with those of the linear multiple regression model (S2 Fig).
T112 8529-8850 Sentence denotes The relative importance of the variables related to human mobility and host susceptibility to COVID-19 (elderly population, BCG vaccination effect, and malaria incidence) became predominant over time, whereas the relative importance of population density and the number of days from case onset decreased after March 2020.
T113 8851-9194 Sentence denotes Moreover, additional analyses, which included the number of conducted COVID-19 tests as a covariate, revealed very similar patterns of regression coefficients, and their explanatory power (S3 Fig), i.e., the roles of climate, international human mobility, and host susceptibility to COVID-19, became more pronounced as the pandemic progressed.
T114 9195-9376 Sentence denotes Therefore, the nonlinearity of epidemic and region-specific testing bias had no serious influence on identifying the environmental drivers shaping the present COVID-19 distribution.
T115 9377-9622 Sentence denotes This study generally supports the findings of several recent reports, which found that climate [8–10], international human mobility [11, 12], and community-based host susceptibility to COVID-19 [13] jointly contributed to the spread of COVID-19.
T116 9623-9789 Sentence denotes Notably, the explanatory power of these drivers substantially increased as the pandemic progressed, indicating a deterministic expansion of COVID-19 around the world.
T117 9790-9911 Sentence denotes Cross-border human mobility, which has been facilitated by globalization [21], clearly accelerated the COVID-19 pandemic.
T118 9912-10050 Sentence denotes This finding is in line with a report by Coelho et al. [12], which emphasized the role of the air transportation network in this pandemic.
T119 10051-10391 Sentence denotes In addition, region-specific COVID-19 susceptibility, which was approximated here by BCG vaccination factors, malaria incidence (because COVID-19 susceptibility may be linked to anti-malarial drug use), and the proportion of the population aged over 65 years, explained a substantial part of the variance in COVID-19 case numbers worldwide.
T120 10392-10531 Sentence denotes This data support the findings by Sala et al. [13] that there is a significant correlation between BCG vaccination and COVID-19 prevalence.
T121 10532-10606 Sentence denotes Notably, these correlation patterns may change as the pandemic progresses.
T122 10607-10972 Sentence denotes For example, while the COVID-19 case numbers (per 1 million population) exhibited a relatively robust correlation with malaria incidence, their correlation with the BCG vaccination effect weakened after April 2020, potentially as a result of the recent spread of COVID-19 into more countries with a BCG vaccination program (e.g., Japan, Russia, Turkey, and Brazil).
T123 10973-11280 Sentence denotes Our analysis using the regression model, which comprehensively accounted for climate, international human mobility, region-specific COVID-19 susceptibility, and socioeconomic conditions, revealed that climate suitability remains an important driver shaping the current distribution of COVID-19 cases [5, 9].
T124 11281-11576 Sentence denotes Although human mobility and host susceptibility to COVID-19 were found to be the main drivers in the spread of COVID-19, the uneven distribution of COVID-19 cases across biome types (Fig 2 and S2 and S4 Videos) suggests that the pandemic may be partially shaped by biogeographical patterns [22].
T125 11577-11743 Sentence denotes However, until the pandemic has lasted a full year, it will not be possible to draw reliable conclusions on the relationship between abiotic factors and COVID-19 [7].
T126 11744-11974 Sentence denotes Our predictive model does not account for variables relevant to local-scale factors that are associated with community infection or containment/suppression measures implemented against the epidemic in individual countries/regions.
T127 11975-12148 Sentence denotes Consequently, the model has residuals (Fig 7), i.e., deviations in the observed number of COVID-19 cases that reflect the influence of local-scale drivers on disease spread.
T128 12149-12682 Sentence denotes Positive deviations in the number of COVID-19 cases may indicate more serious local-scale cluster infections, e.g., in some prefectures in Japan or in parts of South East Asia, Africa, and South America, than predicted by the macro-scale driver-based model, whereas negative deviations in the number of COVID-19 cases indicate the influence of distributional disequilibrium of COVID-19 cases (because SARS-CoV-2 has only recently reached an area, e.g., Africa) or suggest the effectiveness of the present control measures in an area.
T129 12683-12875 Sentence denotes Fig 7 Residual pattern of the regression model predicting the number of COVID-19 cases (per 1 million population) for 1,020 countries/regions across the globe and for 47 prefectures in Japan.
T130 12876-12977 Sentence denotes The map was prepared using shapefile reprinted from a freely available database (GADM; www.gadm.org).
T131 12978-13201 Sentence denotes There is still a distributional disequilibrium in the global prevalence of infections; the number of confirmed COVID-19 cases changes daily, and the trajectories among countries or regions differ largely (Fig 3 and S1 Fig).
T132 13202-13285 Sentence denotes The drivers of COVID-19 case numbers indicate a country-specific pattern (Table 1).
T133 13286-13359 Sentence denotes Table 1 Drivers of the COVID-19 spread in relation to the country types.
T134 13360-13467 Sentence denotes Country types were defined by the patterns of COVID-19 spread (cases per 1 million population) (see Fig 3).
T135 13468-14157 Sentence denotes Type A, countries that had a peak in the number of COVID-19 cases per week before the middle of April and had more than 1,000 COVID-19 cases per 1 million population; type B, countries that exhibited an increase in the number of COVID-19 cases per week after the middle of June and had more than 1,000 COVID-19 cases per 1 million population; type C, countries that had a peak in the number of COVID-19 cases per week before the middle of April and had less than 1,000 COVID-19 cases per 1 million population; and type D, countries that exhibited an increase in the number of COVID-19 cases per week after the middle of June and had less than 1,000 COVID-19 cases per 1 million population.
T136 14158-14282 Sentence denotes The statistical significance of differences between the country types was tested by a Bonferroni’s multiple comparison test.
T137 14283-14381 Sentence denotes Different letters indicate the values that are significantly different (p < 0.05) from each other.
T138 14382-14420 Sentence denotes Factor Type A Type B Type C Type D
T139 14421-14508 Sentence denotes Mean annual temperature 11.1 (±3.88) a 14.6 (±8.87) b 18.5 (±7.96) c 21.4 (±6.81) d
T140 14509-14592 Sentence denotes Mean annual precipitation 865 (±368) a 806 (±541) a 1250 (±629) b 1290 (±869) b
T141 14593-14662 Sentence denotes Population density 485 (±1060) 342 (±1400) 391 (±1500) 164 (±243)
T142 14663-14755 Sentence denotes Relative frequency of visitors 154 (±329) a 36.1 (±65.4) b 73.8 (±97.4) b 16.4 (±27.2) b
T143 14756-14840 Sentence denotes GDP per person 50200 (±21500) a 18500 (±18300) b 22200 (±18100) b 5690 (±5430) c
T144 14841-14931 Sentence denotes BCG vaccination effect -1.37 (±1.42) a 0.752 (±1.37) b 0.467 (±1.51) b 0.88 (±0.694) b
T145 14932-15049 Sentence denotes Relative frequency of people infected by malaria 0.163 (±1.26) a 2180 (±14200) a 2950 (±31800) a 40100 (±85000) b
T146 15050-15396 Sentence denotes Relative frequency of people ≥ 65 years old 18.9 (±3.17) a 11.6 (±4.92) b 14.8 (±6.51) c 7.33 (±4.5) d The type A countries, with more than 1,000 COVID-19 cases per million in which the infection peaked before mid-April, were mostly the developed countries that had predominant cross-border human mobility in relatively cool and dry climates.
T147 15397-15581 Sentence denotes The type B countries, with more than 1,000 COVID-19 cases per million in which the infection spread peaked after mid-June, were quasi-developed countries with BCG vaccination programs.
T148 15582-15829 Sentence denotes The type C countries, with less than 1,000 COVID-19 cases per million in which the infection peaked before mid-April, were countries with high temperature and humidity that are characterized by lower cross-border mobility and more BCG vaccination.
T149 15830-16105 Sentence denotes The type D countries, with less than 1,000 COVID-19 cases per million in which the infection spread peaked after mid-June, were mostly tropical developing countries with lower population density, less cross-border mobility, higher malaria incidence, and less BCG vaccination.
T150 16106-16285 Sentence denotes These country-specific factors indicate that the COVID-19 spread is not simply driven by specific environmental variables, and the underlying mechanisms are complicated (Table 1).
T151 16286-16407 Sentence denotes Therefore, evaluating the drivers of the COVID-19 spread at the present phase of disease expansion is a challenging task.
T152 16408-16536 Sentence denotes The absence of population-wide testing for COVID-19 makes it difficult to investigate the growth dynamics of COVID-19 infection.
T153 16537-16635 Sentence denotes The case data include a selection bias due to surveillance focusing mainly on symptomatic persons.
T154 16636-16937 Sentence denotes In particular, the availability of a reverse transcription polymerase chain reaction (PCR) test to identify COVID-19 cases, e.g. the number of PCR tests conducted per population, varies greatly among countries with different medical/public-health conditions (https://ourworldindata.org/covid-testing).
T155 16938-17098 Sentence denotes Therefore, the true number of the COVID-19 patients and the dynamics of the disease spread are obscured behind the prevalence of asymptomatic carriers [23, 24].
T156 17099-17290 Sentence denotes Nevertheless, our findings demonstrate that the COVID-19 pandemic is deterministically driven by climate suitability, cross-border human mobility, and region-specific COVID-19 susceptibility.
T157 17291-17573 Sentence denotes The present results, based on mapping the spread of COVID-19 and identifying multiple drivers of the outbreak trajectory, contribute to a better understanding of the disease transmission risk and may inform the application of appropriate preventative measures against this pandemic.

2_test

Id Subject Object Predicate Lexical cue
32966315-32714105-96855176 9473-9474 32714105 denotes 8
32966315-32170017-96855177 9510-9512 32170017 denotes 11
32966315-17824419-96855178 9864-9866 17824419 denotes 21
32966315-32313369-96855179 11572-11574 32313369 denotes 22
32966315-32196426-96855180 11740-11741 32196426 denotes 7
32966315-32183930-96855181 17090-17092 32183930 denotes 23
32966315-32033064-96855182 17094-17096 32033064 denotes 24