PMC:7449695 / 1021-24375
Annnotations
LitCovid-PD-FMA-UBERON
{"project":"LitCovid-PD-FMA-UBERON","denotations":[{"id":"T1","span":{"begin":1867,"end":1871},"obj":"Body_part"},{"id":"T2","span":{"begin":5489,"end":5493},"obj":"Body_part"},{"id":"T3","span":{"begin":6335,"end":6342},"obj":"Body_part"},{"id":"T4","span":{"begin":7519,"end":7529},"obj":"Body_part"},{"id":"T5","span":{"begin":8492,"end":8502},"obj":"Body_part"},{"id":"T6","span":{"begin":9465,"end":9475},"obj":"Body_part"},{"id":"T7","span":{"begin":10966,"end":10975},"obj":"Body_part"}],"attributes":[{"id":"A1","pred":"fma_id","subj":"T1","obj":"http://purl.org/sig/ont/fma/fma24728"},{"id":"A2","pred":"fma_id","subj":"T2","obj":"http://purl.org/sig/ont/fma/fma24728"},{"id":"A3","pred":"fma_id","subj":"T3","obj":"http://purl.org/sig/ont/fma/fma23727"},{"id":"A4","pred":"fma_id","subj":"T4","obj":"http://purl.org/sig/ont/fma/fma74591"},{"id":"A5","pred":"fma_id","subj":"T5","obj":"http://purl.org/sig/ont/fma/fma74591"},{"id":"A6","pred":"fma_id","subj":"T6","obj":"http://purl.org/sig/ont/fma/fma74591"},{"id":"A7","pred":"fma_id","subj":"T7","obj":"http://purl.org/sig/ont/fma/fma74591"}],"text":"Introduction\nA small cluster of cases of the disease now known as COVID-19 was first reported on December 29, 2019, in the Chinese city of Wuhan (World Health Organization, 2020a). By early May 2020, the disease had spread to all global regions, and overwhelmed some the world’s most developed health systems. More than 2.8 million cases and 260,000 deaths had been confirmed globally, and the vast majority of countries with confirmed cases were reporting escalating transmission (World Health Organization, 2020b).\nAs of 1 May 2020, there were 6808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. Encouragingly, the daily count of new confirmed cases had been declining since late March 2020, with 308 cases reported nationally since 14 April (Australian Government Department of Health, 2020a). This suggests that Australia has (to date) avoided a “worst-case” scenario — one where planning models estimated a peak daily demand for 35,000 ICU beds by around May 2020, far exceeding the health system’s capacity of around 2,200 ICU beds (Moss et al., 2020).\nThe first wave of COVID-19 epidemics, and the government and public responses to them, have varied vastly across the globe. For example, many European countries and the United States are in the midst of explosive outbreaks with overwhelmed health systems (Remuzzi and Remuzzi, 2020; The Lancet, 2020). Meanwhile, countries such as Singapore and South Korea had early success in containing the spread, partly attributed to their extensive surveillance efforts and case targeted interventions (Ng et al., 2020; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention, 2020). However, despite those early successes, Singapore has recently taken additional steps to further limit transmission in the face of increasing importations and community spread (Government of Singapore, 2020). Other locations in the region, including Taiwan, Hong Kong and New Zealand, have had similar epidemic experiences, achieving control through a combination of border, case targeted and social distancing measures.\nAnalysing key epidemiological and response factors — such as the intensity and timing of public health interventions — that contribute to individual country experiences of COVID-19 will assist in the next stage of response planning globally.\nHere we describe the course of the COVID-19 epidemic and public health response in Australia from 22 January up to mid-April 2020 (summarised in Figure 1). We then quantify the impact of the public health response on disease transmission (Figure 2) and forecast the short-term health system demand from COVID-19 patients (Figure 3).\nFigure 1. Time series of new daily confirmed cases of COVID-19 in Australia by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDates of selected key border and social distancing measures implemented by Australian authorities are indicated by annotations above the plotted case counts. These measures were in addition to case targeted interventions (case isolation and contact quarantine) and further border measures, including enhanced testing and provision of advice, on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note that Australian citizens and residents (and their dependants) were exempt from travel restrictions, but upon returning to Australia were required to quarantine for 14 days from the date of arrival. A full timeline of social distancing and border measures is provided in Figure 1—figure supplement 2.\nFigure 1—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in each Australian state/territory by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDetails on the epidemiological characteristics of locally and overseas acquired infections are available in the Australian Department of Health fortnightly epidemiological reports (Australian Government Department of Health, 2020e).\nFigure 1—figure supplement 2. Timeline of border and social distancing measures implemented in Australia up to 4 April 2020.\nThese measures were in addition to case targeted interventions, specifically case isolation and quarantine of their contacts. Contact tracing was initiated from 29 January 2020 and was performed by public health officials. Note 1: Between 1 February and 15 March, further border measures were introduced, including enhanced testing and provision of advice on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note 2: Australian citizens and residents (and their dependants) were exempt from travel restrictions but upon returning to Australia were required to quarantine for 14 days from the date of arrival. Note 3: School attendance is reported to have reduce substantially following government recommendations to keep children from school (National Centre for Immunisation Research and Surveillance, 2020), and in some cases, prior to these announcements (Carey, 2020). It should also be noted that school holidays in some states/territories overlapped with the restriction periods (late March and early April). Note 4: The use of face masks by the general public was not recommended at any time during the analysis period. Note 5: Personal hygiene measures and the ‘1.5 m distancing rule’ were promoted to the general public through television, print, radio and social media campaigns commissioned by national and state governments.\nFigure 2. Time-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020.\nConfidence in the estimated values is indicated by shading with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Not presented are the Australian Capital Territory (ACT), Northern Territory (NT) and Tasmania (TAS), as these states/territories had insufficient local transmission. The uncertainty in the R𝑒𝑓𝑓 estimates represent variability in a population-level average as a result of imperfect data, rather than individual-level heterogeneity in transmission (i.e., the variation in the number of secondary cases generated by each case).\nFigure 2—figure supplement 1. Sensitivity analysis 1 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 90%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 2. Sensitivity analysis 2 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 80%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 3. Sensitivity analysis 3 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed 50%, 20%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 3. Forecasted daily hospital ward (left) and intensive care unit (right) occupancy (dark ribbons = 50% confidence intervals; light ribbons = 95% confidence intervals) from 17 March to 28 April.\nOccupancy = the number of beds occupied by COVID-19 patients on a given day. Black dots indicate the reported ward and ICU occupancy available from the Australian national COVID-19 database at the time. These data were retrospectively updated where complete data were available (red crosses). Australian health system ward and ICU bed capacities are estimated to be over 25,000 and 1,100, respectively, under the assumption that 50% of total capacity could possibly be dedicated to COVID-19 patients (Australian Institute of Health and Welfare, 2019). The forecasted daily case counts are shown in Figure 3—figure supplement 1.\nFigure 3—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in Australia from 1 March to 13 April 2020 (grey bars) overlaid by daily case counts estimated from the forecasting model up to April 13 and projected forward from 14 to 28 April inclusive.\nInner shading = 50% confidence intervals. Outer shading = 95% confidence intervals. Note that forecasting model estimates prior to 13 April — the last recorded data point at the time of analysis (indicated by the dashed grey line) — use data up to and including the previous day. Black dots show the number of new daily cases of COVID-19 reported from 14 to 28 April.\n\nTimeline of the Australian epidemic\nAustralia took an early and precautionary approach to COVID-19. On 1 February, when China was the only country reporting uncontained transmission, Australian authorities restricted all travel from mainland China to Australia, in order to reduce the risk of importation of the virus. Only Australian citizens and residents (and their dependants) were permitted to travel from China to Australia. These individuals were advised to self-quarantine for 14 days from their date of arrival. Further border measures, including enhanced testing and provision of additional advice, were placed on arrivals from other countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020).\nThe day before Australia imposed these restrictions (January 31), 9720 cases of COVID-19 had been reported in mainland China (World Health Organization, 2020c). Australia had so far detected and managed nine imported cases, all with recent travel history from or a direct epidemiological link to Wuhan (Australian Government Department of Health, 2020b). Before the restrictions, Australia was expecting to receive approximately 200,000 air passengers from mainland China during February 2020 (Australian Bureau of Statistics, 2019). Travel numbers fell dramatically following the imposed travel restrictions.\nThese restrictions were not intended (and highly unlikely [Errett et al., 2020]) to prevent the ultimate importation of COVID-19 into Australia. Their purpose was to delay the establishment of an epidemic, buying valuable time for health authorities to plan and prepare.\nDuring the month of February, with extensive testing and case targeted interventions (case isolation and contact quarantine) initiated from 29 January (Australian Government Department of Health, 2020d), Australia detected and managed only 12 cases. Meanwhile, globally, the geographic extent of transmission and daily counts of confirmed cases and deaths continued to increase drastically (World Health Organization, 2020d). In early March, Australia extended travel restrictions to a number of countries with large uncontained outbreaks, namely Iran (as of 1 March) (Commonwealth Government of Australia, 2020a), South Korea (as of 5 March) (Commonwealth Government of Australia, 2020b) and Italy (as of 11 March) (Commonwealth Government of Australia, 2020c).\nDespite these measures, the daily case counts rose sharply in Australia during the first half of March. While the vast majority of these cases were connected to travellers returning to Australia from overseas, localised community transmission had been reported in areas of Sydney (NSW) and Melbourne (VIC) (Australian Government Department of Health, 2020c). Crude plots of the cumulative number of cases by country showed Australia on an early trajectory similar to the outbreaks experienced in China, Europe and the United States, where health systems had become or were becoming overwhelmed (Australian Government Department of Health, 2020f).\nFrom 16 March, the Australian Government progressively implemented a range of social distancing measures in order to reduce and prevent further community transmission (Commonwealth Government of Australia, 2020d). The day before, authorities had imposed a self-quarantine requirement on all international arrivals (Commonwealth Government of Australia, 2020e). On 19 March, Australia closed its borders to all non-citizens and non-residents (Commonwealth Government of Australia, 2020f), and on March 27, moved to a policy of mandatory quarantine for any returning citizens and residents (Commonwealth Government of Australia, 2020g). By 29 March, social distancing measures had been escalated to the extent that all Australians were strongly advised to leave their homes only for limited essential activities and public gatherings were limited to two people (Commonwealth Government of Australia, 2020h).\nBy late March, daily counts of new cases appeared to be declining, suggesting that these measures had successfully reduced transmission.\n\nQuantifying the impact of the response\nQuantifying changes in the rate of spread of infection over the course of an epidemic is critical for monitoring the collective impact of public health interventions and forecasting the short-term clinical burden. A key indicator of transmission in context is the effective reproduction number (R𝑒𝑓𝑓) — the average number of secondary infections caused by an infected individual in the presence of public health interventions and for which no assumption of 100% susceptibility is made. If control efforts are able to bring R𝑒𝑓𝑓 below 1, then on average there will be a decline in the number of new cases reported. The decline will become apparent after a delay of approximately one incubation period plus time to case detection and reporting following implementation of the control measure (i.e., at least two weeks).\nUsing case counts from the Australian national COVID-19 database, we estimated R𝑒𝑓𝑓 over time for each Australian state from 24 February to 5 April 2020 (Figure 2). We used a statistical method that estimates time-varying R𝑒𝑓𝑓 by using an optimally selected moving average window (according to the continuous ranked probability score) to smooth the curve and reduce the impact of localised clusters and outbreaks that may cause large fluctuations (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020). Importantly, the method accounts for time delays between illness onset and case notification. Incorporation of this lag is critical for accurate interpretation of the most recent data in the analysis, to be sure that an observed drop in the number of reported cases reflects an actual drop in case numbers.\nResults show that R𝑒𝑓𝑓 has likely been below one in each Australian state since early-to-mid March. These estimates are geographically averaged results over large areas and it is possible that R𝑒𝑓𝑓 was much higher than one in a number of localised settings (see Figure 2). The estimated time-varying R𝑒𝑓𝑓 value is based on cases that have been identified as a result of local transmission, whereas imported cases only contribute to the force of infection. Imported and locally acquired cases were assumed to be equally infectious. The method for estimating R𝑒𝑓𝑓 is sensitive to this assumption. Hence, we performed a sensitivity analysis to assess the impact of stepwise reductions in the infectiousness of imported cases on R𝑒𝑓𝑓 as a result of quarantine measures implemented over time (see Figure 2—figure supplement 1, Figure 2—figure supplement 2, and Figure 2—figure supplement 3). The sensitivity analyses suggest that R𝑒𝑓𝑓 may well have dropped below one later than shown in Figure 2.\nIn Victoria and New South Wales, the two Australian states with a substantial number of local cases, the effective reproduction number likely dropped from marginally above one to well below one within a two week period (considering both our main result and those from the sensitivity analyses) coinciding with the implementation of social distancing measures. A comparable trend was observed in New Zealand and many Western European countries, including France, Spain and Germany (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020), where similar national, stage-wise social distancing policies were enacted (Flaxman et al., 2020). However, most of these European countries experienced widespread community transmission prior to the implementation of social distancing measures, with R𝑒𝑓𝑓 estimates reaching between 1.5 and 2 in early March and declining over a longer period (three to four weeks) relative to Australia.\n\nForecasting the clinical burden\nNext we used our estimates of time-varying R𝑒𝑓𝑓 to forecast the short-term clinical burden in Australia. Estimates were input into a mathematical model of disease dynamics that was extended to account for imported cases. A sequential Monte Carlo method was used to infer the model parameters and appropriately capture the uncertainty (Moss et al., 2019a), conditional on each of a number of sampled R𝑒𝑓𝑓 trajectories up to 5 April, from which point they were assumed to be constant. The model was subsequently projected forward from April 14 to April 28, to forecast the number of reported cases, assuming a symptomatic detection probability of 80%.\nThe number of new daily hospitalisations and ICU admissions were estimated from recently observed and forecast case counts. Specifically, the age distribution of projected cases, and age-specific probabilities of hospitalisation and ICU admission, were extracted from Australian age-specific data on confirmed cases, assuming that this distribution would remain unchanged (see Table 1). In order to calculate the number of occupied ward/ICU beds per day, length-of-stay in a ward bed and ICU bed were assumed to be Gamma distributed with means (SD) of 11 (3.42) days and 14 (5.22) days, respectively. Our results indicated that with the public health interventions in place as of 13 April, Australia’s hospital ward and ICU occupancy would remain well below capacity thresholds over the period from 14 to 28 April.\nTable 1. Age-specific proportions of confirmed cases extracted from the Australian national COVID-19 database and age-specific estimates of the probability of hospitalisation and ICU admission for confirmed cases.\nAge Proportion of cases Pr(hospitalisation | confirmed case) Pr(ICU admission | confirmed case)\n0-9 0.0102 0.1475 0.0000\n10-18 0.0186 0.1081 0.0090\n19-29 0.2258 0.0504 0.0007\n30-39 0.1587 0.0865 0.0074\n40-49 0.1291 0.0947 0.0208\n50-59 0.1550 0.1112 0.0173\n60-69 0.1686 0.1529 0.0318\n70-79 0.1050 0.2440 0.0558\n80+ 0.0290 0.3815 0.0462\n\nConclusions\nOur analysis suggests that Australia’s combined strategy of early, targeted management of the risk of importation, case targeted interventions, and broad-scale social distancing measures applied prior to the onset of (detected) widespread community transmission has substantially mitigated the first wave of COVID-19. More detailed analyses are required to assess the relative impact of specific response measures, and this information will be crucial for the next phase of response planning. Other factors, such as temperature, humidity and population density may influence transmission of SARS-CoV-2 (Kissler et al., 2020). Whether these factors have played a role in the relative control of SARS-CoV-2 in some countries, remains an open question. Noting that epidemics are established in both the northern and southern hemispheres, it may be possible to gain insight into such factors over the next six months, via for example a comparative analysis of transmission in Australia and Europe.\nWe further anticipated that the Australian health care system was well positioned to manage the projected COVID-19 case loads over the forecast period (up to 28 April). Ongoing situational assessment and monitoring of forecast hospital and ICU demand will be essential for managing possible future relaxation of broad-scale community interventions. Vigilance for localised increases in epidemic activity and in particular for outbreaks in vulnerable populations such as residential aged care facilities, where a high proportion of cases are likely to be severe, must be maintained.\nOne largely unknown factor at present is the proportion of SARS-CoV-2 infections that are asymptomatic, mild or undiagnosed. Even if this number is high, the Australian population would still be largely susceptible to infection. Accordingly, complete relaxation of the measures currently in place would see a rapid resurgence in epidemic activity. This problem is not unique to Australia. Many countries with intensive social distancing measures in place are starting to grapple with their options and time frames for a gradual return to relative normalcy (Gottlieb et al., 2020).\nThere are difficult decisions ahead for governments, and for now Australia is one of the few countries fortunate enough to be able to plan the next steps from a position of relative calm as opposed to crisis."}
LitCovid-PD-UBERON
{"project":"LitCovid-PD-UBERON","denotations":[{"id":"T1","span":{"begin":1867,"end":1871},"obj":"Body_part"},{"id":"T2","span":{"begin":5489,"end":5493},"obj":"Body_part"},{"id":"T3","span":{"begin":21143,"end":21148},"obj":"Body_part"},{"id":"T4","span":{"begin":22301,"end":22306},"obj":"Body_part"}],"attributes":[{"id":"A1","pred":"uberon_id","subj":"T1","obj":"http://purl.obolibrary.org/obo/UBERON_0001456"},{"id":"A2","pred":"uberon_id","subj":"T2","obj":"http://purl.obolibrary.org/obo/UBERON_0001456"},{"id":"A3","pred":"uberon_id","subj":"T3","obj":"http://purl.obolibrary.org/obo/UBERON_0002542"},{"id":"A4","pred":"uberon_id","subj":"T4","obj":"http://purl.obolibrary.org/obo/UBERON_0002542"}],"text":"Introduction\nA small cluster of cases of the disease now known as COVID-19 was first reported on December 29, 2019, in the Chinese city of Wuhan (World Health Organization, 2020a). By early May 2020, the disease had spread to all global regions, and overwhelmed some the world’s most developed health systems. More than 2.8 million cases and 260,000 deaths had been confirmed globally, and the vast majority of countries with confirmed cases were reporting escalating transmission (World Health Organization, 2020b).\nAs of 1 May 2020, there were 6808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. Encouragingly, the daily count of new confirmed cases had been declining since late March 2020, with 308 cases reported nationally since 14 April (Australian Government Department of Health, 2020a). This suggests that Australia has (to date) avoided a “worst-case” scenario — one where planning models estimated a peak daily demand for 35,000 ICU beds by around May 2020, far exceeding the health system’s capacity of around 2,200 ICU beds (Moss et al., 2020).\nThe first wave of COVID-19 epidemics, and the government and public responses to them, have varied vastly across the globe. For example, many European countries and the United States are in the midst of explosive outbreaks with overwhelmed health systems (Remuzzi and Remuzzi, 2020; The Lancet, 2020). Meanwhile, countries such as Singapore and South Korea had early success in containing the spread, partly attributed to their extensive surveillance efforts and case targeted interventions (Ng et al., 2020; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention, 2020). However, despite those early successes, Singapore has recently taken additional steps to further limit transmission in the face of increasing importations and community spread (Government of Singapore, 2020). Other locations in the region, including Taiwan, Hong Kong and New Zealand, have had similar epidemic experiences, achieving control through a combination of border, case targeted and social distancing measures.\nAnalysing key epidemiological and response factors — such as the intensity and timing of public health interventions — that contribute to individual country experiences of COVID-19 will assist in the next stage of response planning globally.\nHere we describe the course of the COVID-19 epidemic and public health response in Australia from 22 January up to mid-April 2020 (summarised in Figure 1). We then quantify the impact of the public health response on disease transmission (Figure 2) and forecast the short-term health system demand from COVID-19 patients (Figure 3).\nFigure 1. Time series of new daily confirmed cases of COVID-19 in Australia by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDates of selected key border and social distancing measures implemented by Australian authorities are indicated by annotations above the plotted case counts. These measures were in addition to case targeted interventions (case isolation and contact quarantine) and further border measures, including enhanced testing and provision of advice, on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note that Australian citizens and residents (and their dependants) were exempt from travel restrictions, but upon returning to Australia were required to quarantine for 14 days from the date of arrival. A full timeline of social distancing and border measures is provided in Figure 1—figure supplement 2.\nFigure 1—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in each Australian state/territory by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDetails on the epidemiological characteristics of locally and overseas acquired infections are available in the Australian Department of Health fortnightly epidemiological reports (Australian Government Department of Health, 2020e).\nFigure 1—figure supplement 2. Timeline of border and social distancing measures implemented in Australia up to 4 April 2020.\nThese measures were in addition to case targeted interventions, specifically case isolation and quarantine of their contacts. Contact tracing was initiated from 29 January 2020 and was performed by public health officials. Note 1: Between 1 February and 15 March, further border measures were introduced, including enhanced testing and provision of advice on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note 2: Australian citizens and residents (and their dependants) were exempt from travel restrictions but upon returning to Australia were required to quarantine for 14 days from the date of arrival. Note 3: School attendance is reported to have reduce substantially following government recommendations to keep children from school (National Centre for Immunisation Research and Surveillance, 2020), and in some cases, prior to these announcements (Carey, 2020). It should also be noted that school holidays in some states/territories overlapped with the restriction periods (late March and early April). Note 4: The use of face masks by the general public was not recommended at any time during the analysis period. Note 5: Personal hygiene measures and the ‘1.5 m distancing rule’ were promoted to the general public through television, print, radio and social media campaigns commissioned by national and state governments.\nFigure 2. Time-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020.\nConfidence in the estimated values is indicated by shading with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Not presented are the Australian Capital Territory (ACT), Northern Territory (NT) and Tasmania (TAS), as these states/territories had insufficient local transmission. The uncertainty in the R𝑒𝑓𝑓 estimates represent variability in a population-level average as a result of imperfect data, rather than individual-level heterogeneity in transmission (i.e., the variation in the number of secondary cases generated by each case).\nFigure 2—figure supplement 1. Sensitivity analysis 1 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 90%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 2. Sensitivity analysis 2 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 80%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 3. Sensitivity analysis 3 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed 50%, 20%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 3. Forecasted daily hospital ward (left) and intensive care unit (right) occupancy (dark ribbons = 50% confidence intervals; light ribbons = 95% confidence intervals) from 17 March to 28 April.\nOccupancy = the number of beds occupied by COVID-19 patients on a given day. Black dots indicate the reported ward and ICU occupancy available from the Australian national COVID-19 database at the time. These data were retrospectively updated where complete data were available (red crosses). Australian health system ward and ICU bed capacities are estimated to be over 25,000 and 1,100, respectively, under the assumption that 50% of total capacity could possibly be dedicated to COVID-19 patients (Australian Institute of Health and Welfare, 2019). The forecasted daily case counts are shown in Figure 3—figure supplement 1.\nFigure 3—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in Australia from 1 March to 13 April 2020 (grey bars) overlaid by daily case counts estimated from the forecasting model up to April 13 and projected forward from 14 to 28 April inclusive.\nInner shading = 50% confidence intervals. Outer shading = 95% confidence intervals. Note that forecasting model estimates prior to 13 April — the last recorded data point at the time of analysis (indicated by the dashed grey line) — use data up to and including the previous day. Black dots show the number of new daily cases of COVID-19 reported from 14 to 28 April.\n\nTimeline of the Australian epidemic\nAustralia took an early and precautionary approach to COVID-19. On 1 February, when China was the only country reporting uncontained transmission, Australian authorities restricted all travel from mainland China to Australia, in order to reduce the risk of importation of the virus. Only Australian citizens and residents (and their dependants) were permitted to travel from China to Australia. These individuals were advised to self-quarantine for 14 days from their date of arrival. Further border measures, including enhanced testing and provision of additional advice, were placed on arrivals from other countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020).\nThe day before Australia imposed these restrictions (January 31), 9720 cases of COVID-19 had been reported in mainland China (World Health Organization, 2020c). Australia had so far detected and managed nine imported cases, all with recent travel history from or a direct epidemiological link to Wuhan (Australian Government Department of Health, 2020b). Before the restrictions, Australia was expecting to receive approximately 200,000 air passengers from mainland China during February 2020 (Australian Bureau of Statistics, 2019). Travel numbers fell dramatically following the imposed travel restrictions.\nThese restrictions were not intended (and highly unlikely [Errett et al., 2020]) to prevent the ultimate importation of COVID-19 into Australia. Their purpose was to delay the establishment of an epidemic, buying valuable time for health authorities to plan and prepare.\nDuring the month of February, with extensive testing and case targeted interventions (case isolation and contact quarantine) initiated from 29 January (Australian Government Department of Health, 2020d), Australia detected and managed only 12 cases. Meanwhile, globally, the geographic extent of transmission and daily counts of confirmed cases and deaths continued to increase drastically (World Health Organization, 2020d). In early March, Australia extended travel restrictions to a number of countries with large uncontained outbreaks, namely Iran (as of 1 March) (Commonwealth Government of Australia, 2020a), South Korea (as of 5 March) (Commonwealth Government of Australia, 2020b) and Italy (as of 11 March) (Commonwealth Government of Australia, 2020c).\nDespite these measures, the daily case counts rose sharply in Australia during the first half of March. While the vast majority of these cases were connected to travellers returning to Australia from overseas, localised community transmission had been reported in areas of Sydney (NSW) and Melbourne (VIC) (Australian Government Department of Health, 2020c). Crude plots of the cumulative number of cases by country showed Australia on an early trajectory similar to the outbreaks experienced in China, Europe and the United States, where health systems had become or were becoming overwhelmed (Australian Government Department of Health, 2020f).\nFrom 16 March, the Australian Government progressively implemented a range of social distancing measures in order to reduce and prevent further community transmission (Commonwealth Government of Australia, 2020d). The day before, authorities had imposed a self-quarantine requirement on all international arrivals (Commonwealth Government of Australia, 2020e). On 19 March, Australia closed its borders to all non-citizens and non-residents (Commonwealth Government of Australia, 2020f), and on March 27, moved to a policy of mandatory quarantine for any returning citizens and residents (Commonwealth Government of Australia, 2020g). By 29 March, social distancing measures had been escalated to the extent that all Australians were strongly advised to leave their homes only for limited essential activities and public gatherings were limited to two people (Commonwealth Government of Australia, 2020h).\nBy late March, daily counts of new cases appeared to be declining, suggesting that these measures had successfully reduced transmission.\n\nQuantifying the impact of the response\nQuantifying changes in the rate of spread of infection over the course of an epidemic is critical for monitoring the collective impact of public health interventions and forecasting the short-term clinical burden. A key indicator of transmission in context is the effective reproduction number (R𝑒𝑓𝑓) — the average number of secondary infections caused by an infected individual in the presence of public health interventions and for which no assumption of 100% susceptibility is made. If control efforts are able to bring R𝑒𝑓𝑓 below 1, then on average there will be a decline in the number of new cases reported. The decline will become apparent after a delay of approximately one incubation period plus time to case detection and reporting following implementation of the control measure (i.e., at least two weeks).\nUsing case counts from the Australian national COVID-19 database, we estimated R𝑒𝑓𝑓 over time for each Australian state from 24 February to 5 April 2020 (Figure 2). We used a statistical method that estimates time-varying R𝑒𝑓𝑓 by using an optimally selected moving average window (according to the continuous ranked probability score) to smooth the curve and reduce the impact of localised clusters and outbreaks that may cause large fluctuations (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020). Importantly, the method accounts for time delays between illness onset and case notification. Incorporation of this lag is critical for accurate interpretation of the most recent data in the analysis, to be sure that an observed drop in the number of reported cases reflects an actual drop in case numbers.\nResults show that R𝑒𝑓𝑓 has likely been below one in each Australian state since early-to-mid March. These estimates are geographically averaged results over large areas and it is possible that R𝑒𝑓𝑓 was much higher than one in a number of localised settings (see Figure 2). The estimated time-varying R𝑒𝑓𝑓 value is based on cases that have been identified as a result of local transmission, whereas imported cases only contribute to the force of infection. Imported and locally acquired cases were assumed to be equally infectious. The method for estimating R𝑒𝑓𝑓 is sensitive to this assumption. Hence, we performed a sensitivity analysis to assess the impact of stepwise reductions in the infectiousness of imported cases on R𝑒𝑓𝑓 as a result of quarantine measures implemented over time (see Figure 2—figure supplement 1, Figure 2—figure supplement 2, and Figure 2—figure supplement 3). The sensitivity analyses suggest that R𝑒𝑓𝑓 may well have dropped below one later than shown in Figure 2.\nIn Victoria and New South Wales, the two Australian states with a substantial number of local cases, the effective reproduction number likely dropped from marginally above one to well below one within a two week period (considering both our main result and those from the sensitivity analyses) coinciding with the implementation of social distancing measures. A comparable trend was observed in New Zealand and many Western European countries, including France, Spain and Germany (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020), where similar national, stage-wise social distancing policies were enacted (Flaxman et al., 2020). However, most of these European countries experienced widespread community transmission prior to the implementation of social distancing measures, with R𝑒𝑓𝑓 estimates reaching between 1.5 and 2 in early March and declining over a longer period (three to four weeks) relative to Australia.\n\nForecasting the clinical burden\nNext we used our estimates of time-varying R𝑒𝑓𝑓 to forecast the short-term clinical burden in Australia. Estimates were input into a mathematical model of disease dynamics that was extended to account for imported cases. A sequential Monte Carlo method was used to infer the model parameters and appropriately capture the uncertainty (Moss et al., 2019a), conditional on each of a number of sampled R𝑒𝑓𝑓 trajectories up to 5 April, from which point they were assumed to be constant. The model was subsequently projected forward from April 14 to April 28, to forecast the number of reported cases, assuming a symptomatic detection probability of 80%.\nThe number of new daily hospitalisations and ICU admissions were estimated from recently observed and forecast case counts. Specifically, the age distribution of projected cases, and age-specific probabilities of hospitalisation and ICU admission, were extracted from Australian age-specific data on confirmed cases, assuming that this distribution would remain unchanged (see Table 1). In order to calculate the number of occupied ward/ICU beds per day, length-of-stay in a ward bed and ICU bed were assumed to be Gamma distributed with means (SD) of 11 (3.42) days and 14 (5.22) days, respectively. Our results indicated that with the public health interventions in place as of 13 April, Australia’s hospital ward and ICU occupancy would remain well below capacity thresholds over the period from 14 to 28 April.\nTable 1. Age-specific proportions of confirmed cases extracted from the Australian national COVID-19 database and age-specific estimates of the probability of hospitalisation and ICU admission for confirmed cases.\nAge Proportion of cases Pr(hospitalisation | confirmed case) Pr(ICU admission | confirmed case)\n0-9 0.0102 0.1475 0.0000\n10-18 0.0186 0.1081 0.0090\n19-29 0.2258 0.0504 0.0007\n30-39 0.1587 0.0865 0.0074\n40-49 0.1291 0.0947 0.0208\n50-59 0.1550 0.1112 0.0173\n60-69 0.1686 0.1529 0.0318\n70-79 0.1050 0.2440 0.0558\n80+ 0.0290 0.3815 0.0462\n\nConclusions\nOur analysis suggests that Australia’s combined strategy of early, targeted management of the risk of importation, case targeted interventions, and broad-scale social distancing measures applied prior to the onset of (detected) widespread community transmission has substantially mitigated the first wave of COVID-19. More detailed analyses are required to assess the relative impact of specific response measures, and this information will be crucial for the next phase of response planning. Other factors, such as temperature, humidity and population density may influence transmission of SARS-CoV-2 (Kissler et al., 2020). Whether these factors have played a role in the relative control of SARS-CoV-2 in some countries, remains an open question. Noting that epidemics are established in both the northern and southern hemispheres, it may be possible to gain insight into such factors over the next six months, via for example a comparative analysis of transmission in Australia and Europe.\nWe further anticipated that the Australian health care system was well positioned to manage the projected COVID-19 case loads over the forecast period (up to 28 April). Ongoing situational assessment and monitoring of forecast hospital and ICU demand will be essential for managing possible future relaxation of broad-scale community interventions. Vigilance for localised increases in epidemic activity and in particular for outbreaks in vulnerable populations such as residential aged care facilities, where a high proportion of cases are likely to be severe, must be maintained.\nOne largely unknown factor at present is the proportion of SARS-CoV-2 infections that are asymptomatic, mild or undiagnosed. Even if this number is high, the Australian population would still be largely susceptible to infection. Accordingly, complete relaxation of the measures currently in place would see a rapid resurgence in epidemic activity. This problem is not unique to Australia. Many countries with intensive social distancing measures in place are starting to grapple with their options and time frames for a gradual return to relative normalcy (Gottlieb et al., 2020).\nThere are difficult decisions ahead for governments, and for now Australia is one of the few countries fortunate enough to be able to plan the next steps from a position of relative calm as opposed to crisis."}
LitCovid-PD-MONDO
{"project":"LitCovid-PD-MONDO","denotations":[{"id":"T5","span":{"begin":66,"end":74},"obj":"Disease"},{"id":"T6","span":{"begin":570,"end":578},"obj":"Disease"},{"id":"T7","span":{"begin":1112,"end":1120},"obj":"Disease"},{"id":"T8","span":{"begin":1603,"end":1611},"obj":"Disease"},{"id":"T9","span":{"begin":2337,"end":2345},"obj":"Disease"},{"id":"T10","span":{"begin":2442,"end":2450},"obj":"Disease"},{"id":"T11","span":{"begin":2710,"end":2718},"obj":"Disease"},{"id":"T12","span":{"begin":2795,"end":2803},"obj":"Disease"},{"id":"T13","span":{"begin":3822,"end":3830},"obj":"Disease"},{"id":"T14","span":{"begin":4102,"end":4112},"obj":"Disease"},{"id":"T15","span":{"begin":5872,"end":5880},"obj":"Disease"},{"id":"T16","span":{"begin":6857,"end":6865},"obj":"Disease"},{"id":"T17","span":{"begin":7351,"end":7365},"obj":"Disease"},{"id":"T18","span":{"begin":7830,"end":7838},"obj":"Disease"},{"id":"T19","span":{"begin":8324,"end":8338},"obj":"Disease"},{"id":"T20","span":{"begin":8803,"end":8811},"obj":"Disease"},{"id":"T21","span":{"begin":9297,"end":9311},"obj":"Disease"},{"id":"T22","span":{"begin":9887,"end":9895},"obj":"Disease"},{"id":"T23","span":{"begin":10016,"end":10024},"obj":"Disease"},{"id":"T24","span":{"begin":10326,"end":10334},"obj":"Disease"},{"id":"T25","span":{"begin":10547,"end":10555},"obj":"Disease"},{"id":"T26","span":{"begin":11075,"end":11083},"obj":"Disease"},{"id":"T27","span":{"begin":11205,"end":11213},"obj":"Disease"},{"id":"T28","span":{"begin":11934,"end":11942},"obj":"Disease"},{"id":"T29","span":{"begin":12584,"end":12592},"obj":"Disease"},{"id":"T30","span":{"begin":15273,"end":15282},"obj":"Disease"},{"id":"T31","span":{"begin":15563,"end":15573},"obj":"Disease"},{"id":"T32","span":{"begin":16093,"end":16101},"obj":"Disease"},{"id":"T33","span":{"begin":16565,"end":16575},"obj":"Disease"},{"id":"T34","span":{"begin":17364,"end":17373},"obj":"Disease"},{"id":"T35","span":{"begin":17438,"end":17448},"obj":"Disease"},{"id":"T36","span":{"begin":17608,"end":17622},"obj":"Disease"},{"id":"T37","span":{"begin":18463,"end":18473},"obj":"Disease"},{"id":"T38","span":{"begin":20489,"end":20497},"obj":"Disease"},{"id":"T39","span":{"begin":21297,"end":21305},"obj":"Disease"},{"id":"T40","span":{"begin":21580,"end":21588},"obj":"Disease"},{"id":"T41","span":{"begin":21683,"end":21691},"obj":"Disease"},{"id":"T42","span":{"begin":22089,"end":22097},"obj":"Disease"},{"id":"T43","span":{"begin":22624,"end":22632},"obj":"Disease"},{"id":"T44","span":{"begin":22635,"end":22645},"obj":"Disease"},{"id":"T45","span":{"begin":22783,"end":22792},"obj":"Disease"}],"attributes":[{"id":"A5","pred":"mondo_id","subj":"T5","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A6","pred":"mondo_id","subj":"T6","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A7","pred":"mondo_id","subj":"T7","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A8","pred":"mondo_id","subj":"T8","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A9","pred":"mondo_id","subj":"T9","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A10","pred":"mondo_id","subj":"T10","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A11","pred":"mondo_id","subj":"T11","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A12","pred":"mondo_id","subj":"T12","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A13","pred":"mondo_id","subj":"T13","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A14","pred":"mondo_id","subj":"T14","obj":"http://purl.obolibrary.org/obo/MONDO_0005550"},{"id":"A15","pred":"mondo_id","subj":"T15","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A16","pred":"mondo_id","subj":"T16","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A17","pred":"mondo_id","subj":"T17","obj":"http://purl.obolibrary.org/obo/MONDO_0005550"},{"id":"A18","pred":"mondo_id","subj":"T18","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A19","pred":"mondo_id","subj":"T19","obj":"http://purl.obolibrary.org/obo/MONDO_0005550"},{"id":"A20","pred":"mondo_id","subj":"T20","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A21","pred":"mondo_id","subj":"T21","obj":"http://purl.obolibrary.org/obo/MONDO_0005550"},{"id":"A22","pred":"mondo_id","subj":"T22","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A23","pred":"mondo_id","subj":"T23","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A24","pred":"mondo_id","subj":"T24","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A25","pred":"mondo_id","subj":"T25","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A26","pred":"mondo_id","subj":"T26","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A27","pred":"mondo_id","subj":"T27","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A28","pred":"mondo_id","subj":"T28","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A29","pred":"mondo_id","subj":"T29","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A30","pred":"mondo_id","subj":"T30","obj":"http://purl.obolibrary.org/obo/MONDO_0005550"},{"id":"A31","pred":"mondo_id","subj":"T31","obj":"http://purl.obolibrary.org/obo/MONDO_0005550"},{"id":"A32","pred":"mondo_id","subj":"T32","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A33","pred":"mondo_id","subj":"T33","obj":"http://purl.obolibrary.org/obo/MONDO_0005550"},{"id":"A34","pred":"mondo_id","subj":"T34","obj":"http://purl.obolibrary.org/obo/MONDO_0005550"},{"id":"A35","pred":"mondo_id","subj":"T35","obj":"http://purl.obolibrary.org/obo/MONDO_0005550"},{"id":"A36","pred":"mondo_id","subj":"T36","obj":"http://purl.obolibrary.org/obo/MONDO_0005550"},{"id":"A37","pred":"mondo_id","subj":"T37","obj":"http://purl.obolibrary.org/obo/MONDO_0005550"},{"id":"A38","pred":"mondo_id","subj":"T38","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A39","pred":"mondo_id","subj":"T39","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A40","pred":"mondo_id","subj":"T40","obj":"http://purl.obolibrary.org/obo/MONDO_0005091"},{"id":"A41","pred":"mondo_id","subj":"T41","obj":"http://purl.obolibrary.org/obo/MONDO_0005091"},{"id":"A42","pred":"mondo_id","subj":"T42","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A43","pred":"mondo_id","subj":"T43","obj":"http://purl.obolibrary.org/obo/MONDO_0005091"},{"id":"A44","pred":"mondo_id","subj":"T44","obj":"http://purl.obolibrary.org/obo/MONDO_0005550"},{"id":"A45","pred":"mondo_id","subj":"T45","obj":"http://purl.obolibrary.org/obo/MONDO_0005550"}],"text":"Introduction\nA small cluster of cases of the disease now known as COVID-19 was first reported on December 29, 2019, in the Chinese city of Wuhan (World Health Organization, 2020a). By early May 2020, the disease had spread to all global regions, and overwhelmed some the world’s most developed health systems. More than 2.8 million cases and 260,000 deaths had been confirmed globally, and the vast majority of countries with confirmed cases were reporting escalating transmission (World Health Organization, 2020b).\nAs of 1 May 2020, there were 6808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. Encouragingly, the daily count of new confirmed cases had been declining since late March 2020, with 308 cases reported nationally since 14 April (Australian Government Department of Health, 2020a). This suggests that Australia has (to date) avoided a “worst-case” scenario — one where planning models estimated a peak daily demand for 35,000 ICU beds by around May 2020, far exceeding the health system’s capacity of around 2,200 ICU beds (Moss et al., 2020).\nThe first wave of COVID-19 epidemics, and the government and public responses to them, have varied vastly across the globe. For example, many European countries and the United States are in the midst of explosive outbreaks with overwhelmed health systems (Remuzzi and Remuzzi, 2020; The Lancet, 2020). Meanwhile, countries such as Singapore and South Korea had early success in containing the spread, partly attributed to their extensive surveillance efforts and case targeted interventions (Ng et al., 2020; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention, 2020). However, despite those early successes, Singapore has recently taken additional steps to further limit transmission in the face of increasing importations and community spread (Government of Singapore, 2020). Other locations in the region, including Taiwan, Hong Kong and New Zealand, have had similar epidemic experiences, achieving control through a combination of border, case targeted and social distancing measures.\nAnalysing key epidemiological and response factors — such as the intensity and timing of public health interventions — that contribute to individual country experiences of COVID-19 will assist in the next stage of response planning globally.\nHere we describe the course of the COVID-19 epidemic and public health response in Australia from 22 January up to mid-April 2020 (summarised in Figure 1). We then quantify the impact of the public health response on disease transmission (Figure 2) and forecast the short-term health system demand from COVID-19 patients (Figure 3).\nFigure 1. Time series of new daily confirmed cases of COVID-19 in Australia by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDates of selected key border and social distancing measures implemented by Australian authorities are indicated by annotations above the plotted case counts. These measures were in addition to case targeted interventions (case isolation and contact quarantine) and further border measures, including enhanced testing and provision of advice, on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note that Australian citizens and residents (and their dependants) were exempt from travel restrictions, but upon returning to Australia were required to quarantine for 14 days from the date of arrival. A full timeline of social distancing and border measures is provided in Figure 1—figure supplement 2.\nFigure 1—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in each Australian state/territory by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDetails on the epidemiological characteristics of locally and overseas acquired infections are available in the Australian Department of Health fortnightly epidemiological reports (Australian Government Department of Health, 2020e).\nFigure 1—figure supplement 2. Timeline of border and social distancing measures implemented in Australia up to 4 April 2020.\nThese measures were in addition to case targeted interventions, specifically case isolation and quarantine of their contacts. Contact tracing was initiated from 29 January 2020 and was performed by public health officials. Note 1: Between 1 February and 15 March, further border measures were introduced, including enhanced testing and provision of advice on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note 2: Australian citizens and residents (and their dependants) were exempt from travel restrictions but upon returning to Australia were required to quarantine for 14 days from the date of arrival. Note 3: School attendance is reported to have reduce substantially following government recommendations to keep children from school (National Centre for Immunisation Research and Surveillance, 2020), and in some cases, prior to these announcements (Carey, 2020). It should also be noted that school holidays in some states/territories overlapped with the restriction periods (late March and early April). Note 4: The use of face masks by the general public was not recommended at any time during the analysis period. Note 5: Personal hygiene measures and the ‘1.5 m distancing rule’ were promoted to the general public through television, print, radio and social media campaigns commissioned by national and state governments.\nFigure 2. Time-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020.\nConfidence in the estimated values is indicated by shading with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Not presented are the Australian Capital Territory (ACT), Northern Territory (NT) and Tasmania (TAS), as these states/territories had insufficient local transmission. The uncertainty in the R𝑒𝑓𝑓 estimates represent variability in a population-level average as a result of imperfect data, rather than individual-level heterogeneity in transmission (i.e., the variation in the number of secondary cases generated by each case).\nFigure 2—figure supplement 1. Sensitivity analysis 1 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 90%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 2. Sensitivity analysis 2 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 80%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 3. Sensitivity analysis 3 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed 50%, 20%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 3. Forecasted daily hospital ward (left) and intensive care unit (right) occupancy (dark ribbons = 50% confidence intervals; light ribbons = 95% confidence intervals) from 17 March to 28 April.\nOccupancy = the number of beds occupied by COVID-19 patients on a given day. Black dots indicate the reported ward and ICU occupancy available from the Australian national COVID-19 database at the time. These data were retrospectively updated where complete data were available (red crosses). Australian health system ward and ICU bed capacities are estimated to be over 25,000 and 1,100, respectively, under the assumption that 50% of total capacity could possibly be dedicated to COVID-19 patients (Australian Institute of Health and Welfare, 2019). The forecasted daily case counts are shown in Figure 3—figure supplement 1.\nFigure 3—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in Australia from 1 March to 13 April 2020 (grey bars) overlaid by daily case counts estimated from the forecasting model up to April 13 and projected forward from 14 to 28 April inclusive.\nInner shading = 50% confidence intervals. Outer shading = 95% confidence intervals. Note that forecasting model estimates prior to 13 April — the last recorded data point at the time of analysis (indicated by the dashed grey line) — use data up to and including the previous day. Black dots show the number of new daily cases of COVID-19 reported from 14 to 28 April.\n\nTimeline of the Australian epidemic\nAustralia took an early and precautionary approach to COVID-19. On 1 February, when China was the only country reporting uncontained transmission, Australian authorities restricted all travel from mainland China to Australia, in order to reduce the risk of importation of the virus. Only Australian citizens and residents (and their dependants) were permitted to travel from China to Australia. These individuals were advised to self-quarantine for 14 days from their date of arrival. Further border measures, including enhanced testing and provision of additional advice, were placed on arrivals from other countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020).\nThe day before Australia imposed these restrictions (January 31), 9720 cases of COVID-19 had been reported in mainland China (World Health Organization, 2020c). Australia had so far detected and managed nine imported cases, all with recent travel history from or a direct epidemiological link to Wuhan (Australian Government Department of Health, 2020b). Before the restrictions, Australia was expecting to receive approximately 200,000 air passengers from mainland China during February 2020 (Australian Bureau of Statistics, 2019). Travel numbers fell dramatically following the imposed travel restrictions.\nThese restrictions were not intended (and highly unlikely [Errett et al., 2020]) to prevent the ultimate importation of COVID-19 into Australia. Their purpose was to delay the establishment of an epidemic, buying valuable time for health authorities to plan and prepare.\nDuring the month of February, with extensive testing and case targeted interventions (case isolation and contact quarantine) initiated from 29 January (Australian Government Department of Health, 2020d), Australia detected and managed only 12 cases. Meanwhile, globally, the geographic extent of transmission and daily counts of confirmed cases and deaths continued to increase drastically (World Health Organization, 2020d). In early March, Australia extended travel restrictions to a number of countries with large uncontained outbreaks, namely Iran (as of 1 March) (Commonwealth Government of Australia, 2020a), South Korea (as of 5 March) (Commonwealth Government of Australia, 2020b) and Italy (as of 11 March) (Commonwealth Government of Australia, 2020c).\nDespite these measures, the daily case counts rose sharply in Australia during the first half of March. While the vast majority of these cases were connected to travellers returning to Australia from overseas, localised community transmission had been reported in areas of Sydney (NSW) and Melbourne (VIC) (Australian Government Department of Health, 2020c). Crude plots of the cumulative number of cases by country showed Australia on an early trajectory similar to the outbreaks experienced in China, Europe and the United States, where health systems had become or were becoming overwhelmed (Australian Government Department of Health, 2020f).\nFrom 16 March, the Australian Government progressively implemented a range of social distancing measures in order to reduce and prevent further community transmission (Commonwealth Government of Australia, 2020d). The day before, authorities had imposed a self-quarantine requirement on all international arrivals (Commonwealth Government of Australia, 2020e). On 19 March, Australia closed its borders to all non-citizens and non-residents (Commonwealth Government of Australia, 2020f), and on March 27, moved to a policy of mandatory quarantine for any returning citizens and residents (Commonwealth Government of Australia, 2020g). By 29 March, social distancing measures had been escalated to the extent that all Australians were strongly advised to leave their homes only for limited essential activities and public gatherings were limited to two people (Commonwealth Government of Australia, 2020h).\nBy late March, daily counts of new cases appeared to be declining, suggesting that these measures had successfully reduced transmission.\n\nQuantifying the impact of the response\nQuantifying changes in the rate of spread of infection over the course of an epidemic is critical for monitoring the collective impact of public health interventions and forecasting the short-term clinical burden. A key indicator of transmission in context is the effective reproduction number (R𝑒𝑓𝑓) — the average number of secondary infections caused by an infected individual in the presence of public health interventions and for which no assumption of 100% susceptibility is made. If control efforts are able to bring R𝑒𝑓𝑓 below 1, then on average there will be a decline in the number of new cases reported. The decline will become apparent after a delay of approximately one incubation period plus time to case detection and reporting following implementation of the control measure (i.e., at least two weeks).\nUsing case counts from the Australian national COVID-19 database, we estimated R𝑒𝑓𝑓 over time for each Australian state from 24 February to 5 April 2020 (Figure 2). We used a statistical method that estimates time-varying R𝑒𝑓𝑓 by using an optimally selected moving average window (according to the continuous ranked probability score) to smooth the curve and reduce the impact of localised clusters and outbreaks that may cause large fluctuations (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020). Importantly, the method accounts for time delays between illness onset and case notification. Incorporation of this lag is critical for accurate interpretation of the most recent data in the analysis, to be sure that an observed drop in the number of reported cases reflects an actual drop in case numbers.\nResults show that R𝑒𝑓𝑓 has likely been below one in each Australian state since early-to-mid March. These estimates are geographically averaged results over large areas and it is possible that R𝑒𝑓𝑓 was much higher than one in a number of localised settings (see Figure 2). The estimated time-varying R𝑒𝑓𝑓 value is based on cases that have been identified as a result of local transmission, whereas imported cases only contribute to the force of infection. Imported and locally acquired cases were assumed to be equally infectious. The method for estimating R𝑒𝑓𝑓 is sensitive to this assumption. Hence, we performed a sensitivity analysis to assess the impact of stepwise reductions in the infectiousness of imported cases on R𝑒𝑓𝑓 as a result of quarantine measures implemented over time (see Figure 2—figure supplement 1, Figure 2—figure supplement 2, and Figure 2—figure supplement 3). The sensitivity analyses suggest that R𝑒𝑓𝑓 may well have dropped below one later than shown in Figure 2.\nIn Victoria and New South Wales, the two Australian states with a substantial number of local cases, the effective reproduction number likely dropped from marginally above one to well below one within a two week period (considering both our main result and those from the sensitivity analyses) coinciding with the implementation of social distancing measures. A comparable trend was observed in New Zealand and many Western European countries, including France, Spain and Germany (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020), where similar national, stage-wise social distancing policies were enacted (Flaxman et al., 2020). However, most of these European countries experienced widespread community transmission prior to the implementation of social distancing measures, with R𝑒𝑓𝑓 estimates reaching between 1.5 and 2 in early March and declining over a longer period (three to four weeks) relative to Australia.\n\nForecasting the clinical burden\nNext we used our estimates of time-varying R𝑒𝑓𝑓 to forecast the short-term clinical burden in Australia. Estimates were input into a mathematical model of disease dynamics that was extended to account for imported cases. A sequential Monte Carlo method was used to infer the model parameters and appropriately capture the uncertainty (Moss et al., 2019a), conditional on each of a number of sampled R𝑒𝑓𝑓 trajectories up to 5 April, from which point they were assumed to be constant. The model was subsequently projected forward from April 14 to April 28, to forecast the number of reported cases, assuming a symptomatic detection probability of 80%.\nThe number of new daily hospitalisations and ICU admissions were estimated from recently observed and forecast case counts. Specifically, the age distribution of projected cases, and age-specific probabilities of hospitalisation and ICU admission, were extracted from Australian age-specific data on confirmed cases, assuming that this distribution would remain unchanged (see Table 1). In order to calculate the number of occupied ward/ICU beds per day, length-of-stay in a ward bed and ICU bed were assumed to be Gamma distributed with means (SD) of 11 (3.42) days and 14 (5.22) days, respectively. Our results indicated that with the public health interventions in place as of 13 April, Australia’s hospital ward and ICU occupancy would remain well below capacity thresholds over the period from 14 to 28 April.\nTable 1. Age-specific proportions of confirmed cases extracted from the Australian national COVID-19 database and age-specific estimates of the probability of hospitalisation and ICU admission for confirmed cases.\nAge Proportion of cases Pr(hospitalisation | confirmed case) Pr(ICU admission | confirmed case)\n0-9 0.0102 0.1475 0.0000\n10-18 0.0186 0.1081 0.0090\n19-29 0.2258 0.0504 0.0007\n30-39 0.1587 0.0865 0.0074\n40-49 0.1291 0.0947 0.0208\n50-59 0.1550 0.1112 0.0173\n60-69 0.1686 0.1529 0.0318\n70-79 0.1050 0.2440 0.0558\n80+ 0.0290 0.3815 0.0462\n\nConclusions\nOur analysis suggests that Australia’s combined strategy of early, targeted management of the risk of importation, case targeted interventions, and broad-scale social distancing measures applied prior to the onset of (detected) widespread community transmission has substantially mitigated the first wave of COVID-19. More detailed analyses are required to assess the relative impact of specific response measures, and this information will be crucial for the next phase of response planning. Other factors, such as temperature, humidity and population density may influence transmission of SARS-CoV-2 (Kissler et al., 2020). Whether these factors have played a role in the relative control of SARS-CoV-2 in some countries, remains an open question. Noting that epidemics are established in both the northern and southern hemispheres, it may be possible to gain insight into such factors over the next six months, via for example a comparative analysis of transmission in Australia and Europe.\nWe further anticipated that the Australian health care system was well positioned to manage the projected COVID-19 case loads over the forecast period (up to 28 April). Ongoing situational assessment and monitoring of forecast hospital and ICU demand will be essential for managing possible future relaxation of broad-scale community interventions. Vigilance for localised increases in epidemic activity and in particular for outbreaks in vulnerable populations such as residential aged care facilities, where a high proportion of cases are likely to be severe, must be maintained.\nOne largely unknown factor at present is the proportion of SARS-CoV-2 infections that are asymptomatic, mild or undiagnosed. Even if this number is high, the Australian population would still be largely susceptible to infection. Accordingly, complete relaxation of the measures currently in place would see a rapid resurgence in epidemic activity. This problem is not unique to Australia. Many countries with intensive social distancing measures in place are starting to grapple with their options and time frames for a gradual return to relative normalcy (Gottlieb et al., 2020).\nThere are difficult decisions ahead for governments, and for now Australia is one of the few countries fortunate enough to be able to plan the next steps from a position of relative calm as opposed to crisis."}
LitCovid-PD-CLO
{"project":"LitCovid-PD-CLO","denotations":[{"id":"T2","span":{"begin":13,"end":14},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T3","span":{"begin":159,"end":171},"obj":"http://purl.obolibrary.org/obo/OBI_0000245"},{"id":"T4","span":{"begin":495,"end":507},"obj":"http://purl.obolibrary.org/obo/OBI_0000245"},{"id":"T5","span":{"begin":861,"end":864},"obj":"http://purl.obolibrary.org/obo/CLO_0051582"},{"id":"T6","span":{"begin":883,"end":884},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T7","span":{"begin":945,"end":946},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T8","span":{"begin":1794,"end":1797},"obj":"http://purl.obolibrary.org/obo/CLO_0051582"},{"id":"T9","span":{"begin":1867,"end":1871},"obj":"http://purl.obolibrary.org/obo/UBERON_0001456"},{"id":"T10","span":{"begin":2094,"end":2095},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T11","span":{"begin":2505,"end":2507},"obj":"http://purl.obolibrary.org/obo/CLO_0050507"},{"id":"T12","span":{"begin":2917,"end":2919},"obj":"http://purl.obolibrary.org/obo/CLO_0050507"},{"id":"T13","span":{"begin":3282,"end":3289},"obj":"http://purl.obolibrary.org/obo/UBERON_0000473"},{"id":"T14","span":{"begin":3367,"end":3368},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T15","span":{"begin":3645,"end":3646},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T16","span":{"begin":3966,"end":3968},"obj":"http://purl.obolibrary.org/obo/CLO_0050507"},{"id":"T17","span":{"begin":4705,"end":4712},"obj":"http://purl.obolibrary.org/obo/UBERON_0000473"},{"id":"T18","span":{"begin":4789,"end":4790},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T19","span":{"begin":5489,"end":5493},"obj":"http://purl.obolibrary.org/obo/UBERON_0001456"},{"id":"T20","span":{"begin":6532,"end":6533},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T21","span":{"begin":6562,"end":6563},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T22","span":{"begin":7487,"end":7489},"obj":"http://purl.obolibrary.org/obo/CLO_0050509"},{"id":"T23","span":{"begin":7645,"end":7647},"obj":"http://purl.obolibrary.org/obo/CLO_0050509"},{"id":"T24","span":{"begin":7677,"end":7679},"obj":"http://purl.obolibrary.org/obo/CLO_0050509"},{"id":"T25","span":{"begin":8460,"end":8462},"obj":"http://purl.obolibrary.org/obo/CLO_0050509"},{"id":"T26","span":{"begin":8618,"end":8620},"obj":"http://purl.obolibrary.org/obo/CLO_0050509"},{"id":"T27","span":{"begin":8650,"end":8652},"obj":"http://purl.obolibrary.org/obo/CLO_0050509"},{"id":"T28","span":{"begin":9433,"end":9435},"obj":"http://purl.obolibrary.org/obo/CLO_0050509"},{"id":"T29","span":{"begin":9586,"end":9588},"obj":"http://purl.obolibrary.org/obo/CLO_0050509"},{"id":"T30","span":{"begin":9618,"end":9620},"obj":"http://purl.obolibrary.org/obo/CLO_0050509"},{"id":"T31","span":{"begin":9908,"end":9909},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T32","span":{"begin":11427,"end":11432},"obj":"http://purl.obolibrary.org/obo/NCBITaxon_10239"},{"id":"T33","span":{"begin":11680,"end":11687},"obj":"http://purl.obolibrary.org/obo/UBERON_0000473"},{"id":"T34","span":{"begin":11779,"end":11780},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T35","span":{"begin":11993,"end":12005},"obj":"http://purl.obolibrary.org/obo/OBI_0000245"},{"id":"T36","span":{"begin":12117,"end":12118},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T37","span":{"begin":12780,"end":12787},"obj":"http://purl.obolibrary.org/obo/UBERON_0000473"},{"id":"T38","span":{"begin":13139,"end":13151},"obj":"http://purl.obolibrary.org/obo/OBI_0000245"},{"id":"T39","span":{"begin":13219,"end":13220},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T40","span":{"begin":13441,"end":13443},"obj":"http://purl.obolibrary.org/obo/CLO_0053733"},{"id":"T41","span":{"begin":14212,"end":14213},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T42","span":{"begin":14399,"end":14400},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T43","span":{"begin":14646,"end":14648},"obj":"http://purl.obolibrary.org/obo/CLO_0050509"},{"id":"T44","span":{"begin":14659,"end":14660},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T45","span":{"begin":14944,"end":14954},"obj":"http://purl.obolibrary.org/obo/CLO_0001658"},{"id":"T46","span":{"begin":15442,"end":15443},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T47","span":{"begin":15795,"end":15796},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T48","span":{"begin":15881,"end":15882},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T49","span":{"begin":16219,"end":16220},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T50","span":{"begin":16728,"end":16731},"obj":"http://purl.obolibrary.org/obo/CLO_0050236"},{"id":"T51","span":{"begin":16942,"end":16945},"obj":"http://purl.obolibrary.org/obo/CLO_0051582"},{"id":"T52","span":{"begin":17145,"end":17146},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T53","span":{"begin":17277,"end":17278},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T54","span":{"begin":17534,"end":17535},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T55","span":{"begin":17652,"end":17653},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T56","span":{"begin":17975,"end":17976},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T57","span":{"begin":18112,"end":18113},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T58","span":{"begin":18271,"end":18272},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T59","span":{"begin":18837,"end":18838},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T60","span":{"begin":19062,"end":19063},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T61","span":{"begin":19152,"end":19153},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T62","span":{"begin":19310,"end":19311},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T63","span":{"begin":19537,"end":19538},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T64","span":{"begin":20054,"end":20055},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T65","span":{"begin":20133,"end":20135},"obj":"http://purl.obolibrary.org/obo/CLO_0053733"},{"id":"T66","span":{"begin":20741,"end":20743},"obj":"http://purl.obolibrary.org/obo/CLO_0050510"},{"id":"T67","span":{"begin":21251,"end":21254},"obj":"http://purl.obolibrary.org/obo/CLO_0051582"},{"id":"T68","span":{"begin":21649,"end":21650},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T69","span":{"begin":21919,"end":21920},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T70","span":{"begin":22378,"end":22386},"obj":"http://purl.obolibrary.org/obo/CLO_0001658"},{"id":"T71","span":{"begin":22493,"end":22494},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T72","span":{"begin":22872,"end":22873},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T73","span":{"begin":22903,"end":22911},"obj":"http://purl.obolibrary.org/obo/CLO_0001658"},{"id":"T74","span":{"begin":23083,"end":23084},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T75","span":{"begin":23305,"end":23306},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"}],"text":"Introduction\nA small cluster of cases of the disease now known as COVID-19 was first reported on December 29, 2019, in the Chinese city of Wuhan (World Health Organization, 2020a). By early May 2020, the disease had spread to all global regions, and overwhelmed some the world’s most developed health systems. More than 2.8 million cases and 260,000 deaths had been confirmed globally, and the vast majority of countries with confirmed cases were reporting escalating transmission (World Health Organization, 2020b).\nAs of 1 May 2020, there were 6808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. Encouragingly, the daily count of new confirmed cases had been declining since late March 2020, with 308 cases reported nationally since 14 April (Australian Government Department of Health, 2020a). This suggests that Australia has (to date) avoided a “worst-case” scenario — one where planning models estimated a peak daily demand for 35,000 ICU beds by around May 2020, far exceeding the health system’s capacity of around 2,200 ICU beds (Moss et al., 2020).\nThe first wave of COVID-19 epidemics, and the government and public responses to them, have varied vastly across the globe. For example, many European countries and the United States are in the midst of explosive outbreaks with overwhelmed health systems (Remuzzi and Remuzzi, 2020; The Lancet, 2020). Meanwhile, countries such as Singapore and South Korea had early success in containing the spread, partly attributed to their extensive surveillance efforts and case targeted interventions (Ng et al., 2020; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention, 2020). However, despite those early successes, Singapore has recently taken additional steps to further limit transmission in the face of increasing importations and community spread (Government of Singapore, 2020). Other locations in the region, including Taiwan, Hong Kong and New Zealand, have had similar epidemic experiences, achieving control through a combination of border, case targeted and social distancing measures.\nAnalysing key epidemiological and response factors — such as the intensity and timing of public health interventions — that contribute to individual country experiences of COVID-19 will assist in the next stage of response planning globally.\nHere we describe the course of the COVID-19 epidemic and public health response in Australia from 22 January up to mid-April 2020 (summarised in Figure 1). We then quantify the impact of the public health response on disease transmission (Figure 2) and forecast the short-term health system demand from COVID-19 patients (Figure 3).\nFigure 1. Time series of new daily confirmed cases of COVID-19 in Australia by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDates of selected key border and social distancing measures implemented by Australian authorities are indicated by annotations above the plotted case counts. These measures were in addition to case targeted interventions (case isolation and contact quarantine) and further border measures, including enhanced testing and provision of advice, on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note that Australian citizens and residents (and their dependants) were exempt from travel restrictions, but upon returning to Australia were required to quarantine for 14 days from the date of arrival. A full timeline of social distancing and border measures is provided in Figure 1—figure supplement 2.\nFigure 1—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in each Australian state/territory by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDetails on the epidemiological characteristics of locally and overseas acquired infections are available in the Australian Department of Health fortnightly epidemiological reports (Australian Government Department of Health, 2020e).\nFigure 1—figure supplement 2. Timeline of border and social distancing measures implemented in Australia up to 4 April 2020.\nThese measures were in addition to case targeted interventions, specifically case isolation and quarantine of their contacts. Contact tracing was initiated from 29 January 2020 and was performed by public health officials. Note 1: Between 1 February and 15 March, further border measures were introduced, including enhanced testing and provision of advice on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note 2: Australian citizens and residents (and their dependants) were exempt from travel restrictions but upon returning to Australia were required to quarantine for 14 days from the date of arrival. Note 3: School attendance is reported to have reduce substantially following government recommendations to keep children from school (National Centre for Immunisation Research and Surveillance, 2020), and in some cases, prior to these announcements (Carey, 2020). It should also be noted that school holidays in some states/territories overlapped with the restriction periods (late March and early April). Note 4: The use of face masks by the general public was not recommended at any time during the analysis period. Note 5: Personal hygiene measures and the ‘1.5 m distancing rule’ were promoted to the general public through television, print, radio and social media campaigns commissioned by national and state governments.\nFigure 2. Time-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020.\nConfidence in the estimated values is indicated by shading with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Not presented are the Australian Capital Territory (ACT), Northern Territory (NT) and Tasmania (TAS), as these states/territories had insufficient local transmission. The uncertainty in the R𝑒𝑓𝑓 estimates represent variability in a population-level average as a result of imperfect data, rather than individual-level heterogeneity in transmission (i.e., the variation in the number of secondary cases generated by each case).\nFigure 2—figure supplement 1. Sensitivity analysis 1 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 90%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 2. Sensitivity analysis 2 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 80%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 3. Sensitivity analysis 3 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed 50%, 20%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 3. Forecasted daily hospital ward (left) and intensive care unit (right) occupancy (dark ribbons = 50% confidence intervals; light ribbons = 95% confidence intervals) from 17 March to 28 April.\nOccupancy = the number of beds occupied by COVID-19 patients on a given day. Black dots indicate the reported ward and ICU occupancy available from the Australian national COVID-19 database at the time. These data were retrospectively updated where complete data were available (red crosses). Australian health system ward and ICU bed capacities are estimated to be over 25,000 and 1,100, respectively, under the assumption that 50% of total capacity could possibly be dedicated to COVID-19 patients (Australian Institute of Health and Welfare, 2019). The forecasted daily case counts are shown in Figure 3—figure supplement 1.\nFigure 3—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in Australia from 1 March to 13 April 2020 (grey bars) overlaid by daily case counts estimated from the forecasting model up to April 13 and projected forward from 14 to 28 April inclusive.\nInner shading = 50% confidence intervals. Outer shading = 95% confidence intervals. Note that forecasting model estimates prior to 13 April — the last recorded data point at the time of analysis (indicated by the dashed grey line) — use data up to and including the previous day. Black dots show the number of new daily cases of COVID-19 reported from 14 to 28 April.\n\nTimeline of the Australian epidemic\nAustralia took an early and precautionary approach to COVID-19. On 1 February, when China was the only country reporting uncontained transmission, Australian authorities restricted all travel from mainland China to Australia, in order to reduce the risk of importation of the virus. Only Australian citizens and residents (and their dependants) were permitted to travel from China to Australia. These individuals were advised to self-quarantine for 14 days from their date of arrival. Further border measures, including enhanced testing and provision of additional advice, were placed on arrivals from other countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020).\nThe day before Australia imposed these restrictions (January 31), 9720 cases of COVID-19 had been reported in mainland China (World Health Organization, 2020c). Australia had so far detected and managed nine imported cases, all with recent travel history from or a direct epidemiological link to Wuhan (Australian Government Department of Health, 2020b). Before the restrictions, Australia was expecting to receive approximately 200,000 air passengers from mainland China during February 2020 (Australian Bureau of Statistics, 2019). Travel numbers fell dramatically following the imposed travel restrictions.\nThese restrictions were not intended (and highly unlikely [Errett et al., 2020]) to prevent the ultimate importation of COVID-19 into Australia. Their purpose was to delay the establishment of an epidemic, buying valuable time for health authorities to plan and prepare.\nDuring the month of February, with extensive testing and case targeted interventions (case isolation and contact quarantine) initiated from 29 January (Australian Government Department of Health, 2020d), Australia detected and managed only 12 cases. Meanwhile, globally, the geographic extent of transmission and daily counts of confirmed cases and deaths continued to increase drastically (World Health Organization, 2020d). In early March, Australia extended travel restrictions to a number of countries with large uncontained outbreaks, namely Iran (as of 1 March) (Commonwealth Government of Australia, 2020a), South Korea (as of 5 March) (Commonwealth Government of Australia, 2020b) and Italy (as of 11 March) (Commonwealth Government of Australia, 2020c).\nDespite these measures, the daily case counts rose sharply in Australia during the first half of March. While the vast majority of these cases were connected to travellers returning to Australia from overseas, localised community transmission had been reported in areas of Sydney (NSW) and Melbourne (VIC) (Australian Government Department of Health, 2020c). Crude plots of the cumulative number of cases by country showed Australia on an early trajectory similar to the outbreaks experienced in China, Europe and the United States, where health systems had become or were becoming overwhelmed (Australian Government Department of Health, 2020f).\nFrom 16 March, the Australian Government progressively implemented a range of social distancing measures in order to reduce and prevent further community transmission (Commonwealth Government of Australia, 2020d). The day before, authorities had imposed a self-quarantine requirement on all international arrivals (Commonwealth Government of Australia, 2020e). On 19 March, Australia closed its borders to all non-citizens and non-residents (Commonwealth Government of Australia, 2020f), and on March 27, moved to a policy of mandatory quarantine for any returning citizens and residents (Commonwealth Government of Australia, 2020g). By 29 March, social distancing measures had been escalated to the extent that all Australians were strongly advised to leave their homes only for limited essential activities and public gatherings were limited to two people (Commonwealth Government of Australia, 2020h).\nBy late March, daily counts of new cases appeared to be declining, suggesting that these measures had successfully reduced transmission.\n\nQuantifying the impact of the response\nQuantifying changes in the rate of spread of infection over the course of an epidemic is critical for monitoring the collective impact of public health interventions and forecasting the short-term clinical burden. A key indicator of transmission in context is the effective reproduction number (R𝑒𝑓𝑓) — the average number of secondary infections caused by an infected individual in the presence of public health interventions and for which no assumption of 100% susceptibility is made. If control efforts are able to bring R𝑒𝑓𝑓 below 1, then on average there will be a decline in the number of new cases reported. The decline will become apparent after a delay of approximately one incubation period plus time to case detection and reporting following implementation of the control measure (i.e., at least two weeks).\nUsing case counts from the Australian national COVID-19 database, we estimated R𝑒𝑓𝑓 over time for each Australian state from 24 February to 5 April 2020 (Figure 2). We used a statistical method that estimates time-varying R𝑒𝑓𝑓 by using an optimally selected moving average window (according to the continuous ranked probability score) to smooth the curve and reduce the impact of localised clusters and outbreaks that may cause large fluctuations (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020). Importantly, the method accounts for time delays between illness onset and case notification. Incorporation of this lag is critical for accurate interpretation of the most recent data in the analysis, to be sure that an observed drop in the number of reported cases reflects an actual drop in case numbers.\nResults show that R𝑒𝑓𝑓 has likely been below one in each Australian state since early-to-mid March. These estimates are geographically averaged results over large areas and it is possible that R𝑒𝑓𝑓 was much higher than one in a number of localised settings (see Figure 2). The estimated time-varying R𝑒𝑓𝑓 value is based on cases that have been identified as a result of local transmission, whereas imported cases only contribute to the force of infection. Imported and locally acquired cases were assumed to be equally infectious. The method for estimating R𝑒𝑓𝑓 is sensitive to this assumption. Hence, we performed a sensitivity analysis to assess the impact of stepwise reductions in the infectiousness of imported cases on R𝑒𝑓𝑓 as a result of quarantine measures implemented over time (see Figure 2—figure supplement 1, Figure 2—figure supplement 2, and Figure 2—figure supplement 3). The sensitivity analyses suggest that R𝑒𝑓𝑓 may well have dropped below one later than shown in Figure 2.\nIn Victoria and New South Wales, the two Australian states with a substantial number of local cases, the effective reproduction number likely dropped from marginally above one to well below one within a two week period (considering both our main result and those from the sensitivity analyses) coinciding with the implementation of social distancing measures. A comparable trend was observed in New Zealand and many Western European countries, including France, Spain and Germany (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020), where similar national, stage-wise social distancing policies were enacted (Flaxman et al., 2020). However, most of these European countries experienced widespread community transmission prior to the implementation of social distancing measures, with R𝑒𝑓𝑓 estimates reaching between 1.5 and 2 in early March and declining over a longer period (three to four weeks) relative to Australia.\n\nForecasting the clinical burden\nNext we used our estimates of time-varying R𝑒𝑓𝑓 to forecast the short-term clinical burden in Australia. Estimates were input into a mathematical model of disease dynamics that was extended to account for imported cases. A sequential Monte Carlo method was used to infer the model parameters and appropriately capture the uncertainty (Moss et al., 2019a), conditional on each of a number of sampled R𝑒𝑓𝑓 trajectories up to 5 April, from which point they were assumed to be constant. The model was subsequently projected forward from April 14 to April 28, to forecast the number of reported cases, assuming a symptomatic detection probability of 80%.\nThe number of new daily hospitalisations and ICU admissions were estimated from recently observed and forecast case counts. Specifically, the age distribution of projected cases, and age-specific probabilities of hospitalisation and ICU admission, were extracted from Australian age-specific data on confirmed cases, assuming that this distribution would remain unchanged (see Table 1). In order to calculate the number of occupied ward/ICU beds per day, length-of-stay in a ward bed and ICU bed were assumed to be Gamma distributed with means (SD) of 11 (3.42) days and 14 (5.22) days, respectively. Our results indicated that with the public health interventions in place as of 13 April, Australia’s hospital ward and ICU occupancy would remain well below capacity thresholds over the period from 14 to 28 April.\nTable 1. Age-specific proportions of confirmed cases extracted from the Australian national COVID-19 database and age-specific estimates of the probability of hospitalisation and ICU admission for confirmed cases.\nAge Proportion of cases Pr(hospitalisation | confirmed case) Pr(ICU admission | confirmed case)\n0-9 0.0102 0.1475 0.0000\n10-18 0.0186 0.1081 0.0090\n19-29 0.2258 0.0504 0.0007\n30-39 0.1587 0.0865 0.0074\n40-49 0.1291 0.0947 0.0208\n50-59 0.1550 0.1112 0.0173\n60-69 0.1686 0.1529 0.0318\n70-79 0.1050 0.2440 0.0558\n80+ 0.0290 0.3815 0.0462\n\nConclusions\nOur analysis suggests that Australia’s combined strategy of early, targeted management of the risk of importation, case targeted interventions, and broad-scale social distancing measures applied prior to the onset of (detected) widespread community transmission has substantially mitigated the first wave of COVID-19. More detailed analyses are required to assess the relative impact of specific response measures, and this information will be crucial for the next phase of response planning. Other factors, such as temperature, humidity and population density may influence transmission of SARS-CoV-2 (Kissler et al., 2020). Whether these factors have played a role in the relative control of SARS-CoV-2 in some countries, remains an open question. Noting that epidemics are established in both the northern and southern hemispheres, it may be possible to gain insight into such factors over the next six months, via for example a comparative analysis of transmission in Australia and Europe.\nWe further anticipated that the Australian health care system was well positioned to manage the projected COVID-19 case loads over the forecast period (up to 28 April). Ongoing situational assessment and monitoring of forecast hospital and ICU demand will be essential for managing possible future relaxation of broad-scale community interventions. Vigilance for localised increases in epidemic activity and in particular for outbreaks in vulnerable populations such as residential aged care facilities, where a high proportion of cases are likely to be severe, must be maintained.\nOne largely unknown factor at present is the proportion of SARS-CoV-2 infections that are asymptomatic, mild or undiagnosed. Even if this number is high, the Australian population would still be largely susceptible to infection. Accordingly, complete relaxation of the measures currently in place would see a rapid resurgence in epidemic activity. This problem is not unique to Australia. Many countries with intensive social distancing measures in place are starting to grapple with their options and time frames for a gradual return to relative normalcy (Gottlieb et al., 2020).\nThere are difficult decisions ahead for governments, and for now Australia is one of the few countries fortunate enough to be able to plan the next steps from a position of relative calm as opposed to crisis."}
LitCovid-PD-CHEBI
{"project":"LitCovid-PD-CHEBI","denotations":[{"id":"T1","span":{"begin":1297,"end":1306},"obj":"Chemical"},{"id":"T2","span":{"begin":5711,"end":5716},"obj":"Chemical"},{"id":"T3","span":{"begin":6398,"end":6401},"obj":"Chemical"},{"id":"T4","span":{"begin":15448,"end":15457},"obj":"Chemical"},{"id":"T5","span":{"begin":16598,"end":16603},"obj":"Chemical"},{"id":"T6","span":{"begin":18496,"end":18501},"obj":"Chemical"},{"id":"T7","span":{"begin":20126,"end":20128},"obj":"Chemical"},{"id":"T8","span":{"begin":20637,"end":20639},"obj":"Chemical"},{"id":"T11","span":{"begin":20675,"end":20677},"obj":"Chemical"}],"attributes":[{"id":"A1","pred":"chebi_id","subj":"T1","obj":"http://purl.obolibrary.org/obo/CHEBI_63490"},{"id":"A2","pred":"chebi_id","subj":"T2","obj":"http://purl.obolibrary.org/obo/CHEBI_33325"},{"id":"A3","pred":"chebi_id","subj":"T3","obj":"http://purl.obolibrary.org/obo/CHEBI_73657"},{"id":"A4","pred":"chebi_id","subj":"T4","obj":"http://purl.obolibrary.org/obo/CHEBI_47867"},{"id":"A5","pred":"chebi_id","subj":"T5","obj":"http://purl.obolibrary.org/obo/CHEBI_24433"},{"id":"A6","pred":"chebi_id","subj":"T6","obj":"http://purl.obolibrary.org/obo/CHEBI_24433"},{"id":"A7","pred":"chebi_id","subj":"T7","obj":"http://purl.obolibrary.org/obo/CHEBI_74807"},{"id":"A8","pred":"chebi_id","subj":"T8","obj":"http://purl.obolibrary.org/obo/CHEBI_26308"},{"id":"A9","pred":"chebi_id","subj":"T8","obj":"http://purl.obolibrary.org/obo/CHEBI_49828"},{"id":"A10","pred":"chebi_id","subj":"T8","obj":"http://purl.obolibrary.org/obo/CHEBI_8645"},{"id":"A11","pred":"chebi_id","subj":"T11","obj":"http://purl.obolibrary.org/obo/CHEBI_26308"},{"id":"A12","pred":"chebi_id","subj":"T11","obj":"http://purl.obolibrary.org/obo/CHEBI_49828"},{"id":"A13","pred":"chebi_id","subj":"T11","obj":"http://purl.obolibrary.org/obo/CHEBI_8645"}],"text":"Introduction\nA small cluster of cases of the disease now known as COVID-19 was first reported on December 29, 2019, in the Chinese city of Wuhan (World Health Organization, 2020a). By early May 2020, the disease had spread to all global regions, and overwhelmed some the world’s most developed health systems. More than 2.8 million cases and 260,000 deaths had been confirmed globally, and the vast majority of countries with confirmed cases were reporting escalating transmission (World Health Organization, 2020b).\nAs of 1 May 2020, there were 6808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. Encouragingly, the daily count of new confirmed cases had been declining since late March 2020, with 308 cases reported nationally since 14 April (Australian Government Department of Health, 2020a). This suggests that Australia has (to date) avoided a “worst-case” scenario — one where planning models estimated a peak daily demand for 35,000 ICU beds by around May 2020, far exceeding the health system’s capacity of around 2,200 ICU beds (Moss et al., 2020).\nThe first wave of COVID-19 epidemics, and the government and public responses to them, have varied vastly across the globe. For example, many European countries and the United States are in the midst of explosive outbreaks with overwhelmed health systems (Remuzzi and Remuzzi, 2020; The Lancet, 2020). Meanwhile, countries such as Singapore and South Korea had early success in containing the spread, partly attributed to their extensive surveillance efforts and case targeted interventions (Ng et al., 2020; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention, 2020). However, despite those early successes, Singapore has recently taken additional steps to further limit transmission in the face of increasing importations and community spread (Government of Singapore, 2020). Other locations in the region, including Taiwan, Hong Kong and New Zealand, have had similar epidemic experiences, achieving control through a combination of border, case targeted and social distancing measures.\nAnalysing key epidemiological and response factors — such as the intensity and timing of public health interventions — that contribute to individual country experiences of COVID-19 will assist in the next stage of response planning globally.\nHere we describe the course of the COVID-19 epidemic and public health response in Australia from 22 January up to mid-April 2020 (summarised in Figure 1). We then quantify the impact of the public health response on disease transmission (Figure 2) and forecast the short-term health system demand from COVID-19 patients (Figure 3).\nFigure 1. Time series of new daily confirmed cases of COVID-19 in Australia by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDates of selected key border and social distancing measures implemented by Australian authorities are indicated by annotations above the plotted case counts. These measures were in addition to case targeted interventions (case isolation and contact quarantine) and further border measures, including enhanced testing and provision of advice, on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note that Australian citizens and residents (and their dependants) were exempt from travel restrictions, but upon returning to Australia were required to quarantine for 14 days from the date of arrival. A full timeline of social distancing and border measures is provided in Figure 1—figure supplement 2.\nFigure 1—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in each Australian state/territory by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDetails on the epidemiological characteristics of locally and overseas acquired infections are available in the Australian Department of Health fortnightly epidemiological reports (Australian Government Department of Health, 2020e).\nFigure 1—figure supplement 2. Timeline of border and social distancing measures implemented in Australia up to 4 April 2020.\nThese measures were in addition to case targeted interventions, specifically case isolation and quarantine of their contacts. Contact tracing was initiated from 29 January 2020 and was performed by public health officials. Note 1: Between 1 February and 15 March, further border measures were introduced, including enhanced testing and provision of advice on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note 2: Australian citizens and residents (and their dependants) were exempt from travel restrictions but upon returning to Australia were required to quarantine for 14 days from the date of arrival. Note 3: School attendance is reported to have reduce substantially following government recommendations to keep children from school (National Centre for Immunisation Research and Surveillance, 2020), and in some cases, prior to these announcements (Carey, 2020). It should also be noted that school holidays in some states/territories overlapped with the restriction periods (late March and early April). Note 4: The use of face masks by the general public was not recommended at any time during the analysis period. Note 5: Personal hygiene measures and the ‘1.5 m distancing rule’ were promoted to the general public through television, print, radio and social media campaigns commissioned by national and state governments.\nFigure 2. Time-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020.\nConfidence in the estimated values is indicated by shading with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Not presented are the Australian Capital Territory (ACT), Northern Territory (NT) and Tasmania (TAS), as these states/territories had insufficient local transmission. The uncertainty in the R𝑒𝑓𝑓 estimates represent variability in a population-level average as a result of imperfect data, rather than individual-level heterogeneity in transmission (i.e., the variation in the number of secondary cases generated by each case).\nFigure 2—figure supplement 1. Sensitivity analysis 1 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 90%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 2. Sensitivity analysis 2 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 80%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 3. Sensitivity analysis 3 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed 50%, 20%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 3. Forecasted daily hospital ward (left) and intensive care unit (right) occupancy (dark ribbons = 50% confidence intervals; light ribbons = 95% confidence intervals) from 17 March to 28 April.\nOccupancy = the number of beds occupied by COVID-19 patients on a given day. Black dots indicate the reported ward and ICU occupancy available from the Australian national COVID-19 database at the time. These data were retrospectively updated where complete data were available (red crosses). Australian health system ward and ICU bed capacities are estimated to be over 25,000 and 1,100, respectively, under the assumption that 50% of total capacity could possibly be dedicated to COVID-19 patients (Australian Institute of Health and Welfare, 2019). The forecasted daily case counts are shown in Figure 3—figure supplement 1.\nFigure 3—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in Australia from 1 March to 13 April 2020 (grey bars) overlaid by daily case counts estimated from the forecasting model up to April 13 and projected forward from 14 to 28 April inclusive.\nInner shading = 50% confidence intervals. Outer shading = 95% confidence intervals. Note that forecasting model estimates prior to 13 April — the last recorded data point at the time of analysis (indicated by the dashed grey line) — use data up to and including the previous day. Black dots show the number of new daily cases of COVID-19 reported from 14 to 28 April.\n\nTimeline of the Australian epidemic\nAustralia took an early and precautionary approach to COVID-19. On 1 February, when China was the only country reporting uncontained transmission, Australian authorities restricted all travel from mainland China to Australia, in order to reduce the risk of importation of the virus. Only Australian citizens and residents (and their dependants) were permitted to travel from China to Australia. These individuals were advised to self-quarantine for 14 days from their date of arrival. Further border measures, including enhanced testing and provision of additional advice, were placed on arrivals from other countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020).\nThe day before Australia imposed these restrictions (January 31), 9720 cases of COVID-19 had been reported in mainland China (World Health Organization, 2020c). Australia had so far detected and managed nine imported cases, all with recent travel history from or a direct epidemiological link to Wuhan (Australian Government Department of Health, 2020b). Before the restrictions, Australia was expecting to receive approximately 200,000 air passengers from mainland China during February 2020 (Australian Bureau of Statistics, 2019). Travel numbers fell dramatically following the imposed travel restrictions.\nThese restrictions were not intended (and highly unlikely [Errett et al., 2020]) to prevent the ultimate importation of COVID-19 into Australia. Their purpose was to delay the establishment of an epidemic, buying valuable time for health authorities to plan and prepare.\nDuring the month of February, with extensive testing and case targeted interventions (case isolation and contact quarantine) initiated from 29 January (Australian Government Department of Health, 2020d), Australia detected and managed only 12 cases. Meanwhile, globally, the geographic extent of transmission and daily counts of confirmed cases and deaths continued to increase drastically (World Health Organization, 2020d). In early March, Australia extended travel restrictions to a number of countries with large uncontained outbreaks, namely Iran (as of 1 March) (Commonwealth Government of Australia, 2020a), South Korea (as of 5 March) (Commonwealth Government of Australia, 2020b) and Italy (as of 11 March) (Commonwealth Government of Australia, 2020c).\nDespite these measures, the daily case counts rose sharply in Australia during the first half of March. While the vast majority of these cases were connected to travellers returning to Australia from overseas, localised community transmission had been reported in areas of Sydney (NSW) and Melbourne (VIC) (Australian Government Department of Health, 2020c). Crude plots of the cumulative number of cases by country showed Australia on an early trajectory similar to the outbreaks experienced in China, Europe and the United States, where health systems had become or were becoming overwhelmed (Australian Government Department of Health, 2020f).\nFrom 16 March, the Australian Government progressively implemented a range of social distancing measures in order to reduce and prevent further community transmission (Commonwealth Government of Australia, 2020d). The day before, authorities had imposed a self-quarantine requirement on all international arrivals (Commonwealth Government of Australia, 2020e). On 19 March, Australia closed its borders to all non-citizens and non-residents (Commonwealth Government of Australia, 2020f), and on March 27, moved to a policy of mandatory quarantine for any returning citizens and residents (Commonwealth Government of Australia, 2020g). By 29 March, social distancing measures had been escalated to the extent that all Australians were strongly advised to leave their homes only for limited essential activities and public gatherings were limited to two people (Commonwealth Government of Australia, 2020h).\nBy late March, daily counts of new cases appeared to be declining, suggesting that these measures had successfully reduced transmission.\n\nQuantifying the impact of the response\nQuantifying changes in the rate of spread of infection over the course of an epidemic is critical for monitoring the collective impact of public health interventions and forecasting the short-term clinical burden. A key indicator of transmission in context is the effective reproduction number (R𝑒𝑓𝑓) — the average number of secondary infections caused by an infected individual in the presence of public health interventions and for which no assumption of 100% susceptibility is made. If control efforts are able to bring R𝑒𝑓𝑓 below 1, then on average there will be a decline in the number of new cases reported. The decline will become apparent after a delay of approximately one incubation period plus time to case detection and reporting following implementation of the control measure (i.e., at least two weeks).\nUsing case counts from the Australian national COVID-19 database, we estimated R𝑒𝑓𝑓 over time for each Australian state from 24 February to 5 April 2020 (Figure 2). We used a statistical method that estimates time-varying R𝑒𝑓𝑓 by using an optimally selected moving average window (according to the continuous ranked probability score) to smooth the curve and reduce the impact of localised clusters and outbreaks that may cause large fluctuations (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020). Importantly, the method accounts for time delays between illness onset and case notification. Incorporation of this lag is critical for accurate interpretation of the most recent data in the analysis, to be sure that an observed drop in the number of reported cases reflects an actual drop in case numbers.\nResults show that R𝑒𝑓𝑓 has likely been below one in each Australian state since early-to-mid March. These estimates are geographically averaged results over large areas and it is possible that R𝑒𝑓𝑓 was much higher than one in a number of localised settings (see Figure 2). The estimated time-varying R𝑒𝑓𝑓 value is based on cases that have been identified as a result of local transmission, whereas imported cases only contribute to the force of infection. Imported and locally acquired cases were assumed to be equally infectious. The method for estimating R𝑒𝑓𝑓 is sensitive to this assumption. Hence, we performed a sensitivity analysis to assess the impact of stepwise reductions in the infectiousness of imported cases on R𝑒𝑓𝑓 as a result of quarantine measures implemented over time (see Figure 2—figure supplement 1, Figure 2—figure supplement 2, and Figure 2—figure supplement 3). The sensitivity analyses suggest that R𝑒𝑓𝑓 may well have dropped below one later than shown in Figure 2.\nIn Victoria and New South Wales, the two Australian states with a substantial number of local cases, the effective reproduction number likely dropped from marginally above one to well below one within a two week period (considering both our main result and those from the sensitivity analyses) coinciding with the implementation of social distancing measures. A comparable trend was observed in New Zealand and many Western European countries, including France, Spain and Germany (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020), where similar national, stage-wise social distancing policies were enacted (Flaxman et al., 2020). However, most of these European countries experienced widespread community transmission prior to the implementation of social distancing measures, with R𝑒𝑓𝑓 estimates reaching between 1.5 and 2 in early March and declining over a longer period (three to four weeks) relative to Australia.\n\nForecasting the clinical burden\nNext we used our estimates of time-varying R𝑒𝑓𝑓 to forecast the short-term clinical burden in Australia. Estimates were input into a mathematical model of disease dynamics that was extended to account for imported cases. A sequential Monte Carlo method was used to infer the model parameters and appropriately capture the uncertainty (Moss et al., 2019a), conditional on each of a number of sampled R𝑒𝑓𝑓 trajectories up to 5 April, from which point they were assumed to be constant. The model was subsequently projected forward from April 14 to April 28, to forecast the number of reported cases, assuming a symptomatic detection probability of 80%.\nThe number of new daily hospitalisations and ICU admissions were estimated from recently observed and forecast case counts. Specifically, the age distribution of projected cases, and age-specific probabilities of hospitalisation and ICU admission, were extracted from Australian age-specific data on confirmed cases, assuming that this distribution would remain unchanged (see Table 1). In order to calculate the number of occupied ward/ICU beds per day, length-of-stay in a ward bed and ICU bed were assumed to be Gamma distributed with means (SD) of 11 (3.42) days and 14 (5.22) days, respectively. Our results indicated that with the public health interventions in place as of 13 April, Australia’s hospital ward and ICU occupancy would remain well below capacity thresholds over the period from 14 to 28 April.\nTable 1. Age-specific proportions of confirmed cases extracted from the Australian national COVID-19 database and age-specific estimates of the probability of hospitalisation and ICU admission for confirmed cases.\nAge Proportion of cases Pr(hospitalisation | confirmed case) Pr(ICU admission | confirmed case)\n0-9 0.0102 0.1475 0.0000\n10-18 0.0186 0.1081 0.0090\n19-29 0.2258 0.0504 0.0007\n30-39 0.1587 0.0865 0.0074\n40-49 0.1291 0.0947 0.0208\n50-59 0.1550 0.1112 0.0173\n60-69 0.1686 0.1529 0.0318\n70-79 0.1050 0.2440 0.0558\n80+ 0.0290 0.3815 0.0462\n\nConclusions\nOur analysis suggests that Australia’s combined strategy of early, targeted management of the risk of importation, case targeted interventions, and broad-scale social distancing measures applied prior to the onset of (detected) widespread community transmission has substantially mitigated the first wave of COVID-19. More detailed analyses are required to assess the relative impact of specific response measures, and this information will be crucial for the next phase of response planning. Other factors, such as temperature, humidity and population density may influence transmission of SARS-CoV-2 (Kissler et al., 2020). Whether these factors have played a role in the relative control of SARS-CoV-2 in some countries, remains an open question. Noting that epidemics are established in both the northern and southern hemispheres, it may be possible to gain insight into such factors over the next six months, via for example a comparative analysis of transmission in Australia and Europe.\nWe further anticipated that the Australian health care system was well positioned to manage the projected COVID-19 case loads over the forecast period (up to 28 April). Ongoing situational assessment and monitoring of forecast hospital and ICU demand will be essential for managing possible future relaxation of broad-scale community interventions. Vigilance for localised increases in epidemic activity and in particular for outbreaks in vulnerable populations such as residential aged care facilities, where a high proportion of cases are likely to be severe, must be maintained.\nOne largely unknown factor at present is the proportion of SARS-CoV-2 infections that are asymptomatic, mild or undiagnosed. Even if this number is high, the Australian population would still be largely susceptible to infection. Accordingly, complete relaxation of the measures currently in place would see a rapid resurgence in epidemic activity. This problem is not unique to Australia. Many countries with intensive social distancing measures in place are starting to grapple with their options and time frames for a gradual return to relative normalcy (Gottlieb et al., 2020).\nThere are difficult decisions ahead for governments, and for now Australia is one of the few countries fortunate enough to be able to plan the next steps from a position of relative calm as opposed to crisis."}
LitCovid-PD-HP
{"project":"LitCovid-PD-HP","denotations":[{"id":"T1","span":{"begin":22768,"end":22792},"obj":"Phenotype"},{"id":"T1","span":{"begin":22768,"end":22792},"obj":"Phenotype"}],"attributes":[{"id":"A1","pred":"hp_id","subj":"T1","obj":"http://purl.obolibrary.org/obo/HP_0002719"},{"id":"A1","pred":"hp_id","subj":"T1","obj":"http://purl.obolibrary.org/obo/HP_0002719"}],"text":"Introduction\nA small cluster of cases of the disease now known as COVID-19 was first reported on December 29, 2019, in the Chinese city of Wuhan (World Health Organization, 2020a). By early May 2020, the disease had spread to all global regions, and overwhelmed some the world’s most developed health systems. More than 2.8 million cases and 260,000 deaths had been confirmed globally, and the vast majority of countries with confirmed cases were reporting escalating transmission (World Health Organization, 2020b).\nAs of 1 May 2020, there were 6808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. Encouragingly, the daily count of new confirmed cases had been declining since late March 2020, with 308 cases reported nationally since 14 April (Australian Government Department of Health, 2020a). This suggests that Australia has (to date) avoided a “worst-case” scenario — one where planning models estimated a peak daily demand for 35,000 ICU beds by around May 2020, far exceeding the health system’s capacity of around 2,200 ICU beds (Moss et al., 2020).\nThe first wave of COVID-19 epidemics, and the government and public responses to them, have varied vastly across the globe. For example, many European countries and the United States are in the midst of explosive outbreaks with overwhelmed health systems (Remuzzi and Remuzzi, 2020; The Lancet, 2020). Meanwhile, countries such as Singapore and South Korea had early success in containing the spread, partly attributed to their extensive surveillance efforts and case targeted interventions (Ng et al., 2020; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention, 2020). However, despite those early successes, Singapore has recently taken additional steps to further limit transmission in the face of increasing importations and community spread (Government of Singapore, 2020). Other locations in the region, including Taiwan, Hong Kong and New Zealand, have had similar epidemic experiences, achieving control through a combination of border, case targeted and social distancing measures.\nAnalysing key epidemiological and response factors — such as the intensity and timing of public health interventions — that contribute to individual country experiences of COVID-19 will assist in the next stage of response planning globally.\nHere we describe the course of the COVID-19 epidemic and public health response in Australia from 22 January up to mid-April 2020 (summarised in Figure 1). We then quantify the impact of the public health response on disease transmission (Figure 2) and forecast the short-term health system demand from COVID-19 patients (Figure 3).\nFigure 1. Time series of new daily confirmed cases of COVID-19 in Australia by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDates of selected key border and social distancing measures implemented by Australian authorities are indicated by annotations above the plotted case counts. These measures were in addition to case targeted interventions (case isolation and contact quarantine) and further border measures, including enhanced testing and provision of advice, on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note that Australian citizens and residents (and their dependants) were exempt from travel restrictions, but upon returning to Australia were required to quarantine for 14 days from the date of arrival. A full timeline of social distancing and border measures is provided in Figure 1—figure supplement 2.\nFigure 1—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in each Australian state/territory by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDetails on the epidemiological characteristics of locally and overseas acquired infections are available in the Australian Department of Health fortnightly epidemiological reports (Australian Government Department of Health, 2020e).\nFigure 1—figure supplement 2. Timeline of border and social distancing measures implemented in Australia up to 4 April 2020.\nThese measures were in addition to case targeted interventions, specifically case isolation and quarantine of their contacts. Contact tracing was initiated from 29 January 2020 and was performed by public health officials. Note 1: Between 1 February and 15 March, further border measures were introduced, including enhanced testing and provision of advice on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note 2: Australian citizens and residents (and their dependants) were exempt from travel restrictions but upon returning to Australia were required to quarantine for 14 days from the date of arrival. Note 3: School attendance is reported to have reduce substantially following government recommendations to keep children from school (National Centre for Immunisation Research and Surveillance, 2020), and in some cases, prior to these announcements (Carey, 2020). It should also be noted that school holidays in some states/territories overlapped with the restriction periods (late March and early April). Note 4: The use of face masks by the general public was not recommended at any time during the analysis period. Note 5: Personal hygiene measures and the ‘1.5 m distancing rule’ were promoted to the general public through television, print, radio and social media campaigns commissioned by national and state governments.\nFigure 2. Time-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020.\nConfidence in the estimated values is indicated by shading with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Not presented are the Australian Capital Territory (ACT), Northern Territory (NT) and Tasmania (TAS), as these states/territories had insufficient local transmission. The uncertainty in the R𝑒𝑓𝑓 estimates represent variability in a population-level average as a result of imperfect data, rather than individual-level heterogeneity in transmission (i.e., the variation in the number of secondary cases generated by each case).\nFigure 2—figure supplement 1. Sensitivity analysis 1 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 90%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 2. Sensitivity analysis 2 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 80%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 3. Sensitivity analysis 3 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed 50%, 20%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 3. Forecasted daily hospital ward (left) and intensive care unit (right) occupancy (dark ribbons = 50% confidence intervals; light ribbons = 95% confidence intervals) from 17 March to 28 April.\nOccupancy = the number of beds occupied by COVID-19 patients on a given day. Black dots indicate the reported ward and ICU occupancy available from the Australian national COVID-19 database at the time. These data were retrospectively updated where complete data were available (red crosses). Australian health system ward and ICU bed capacities are estimated to be over 25,000 and 1,100, respectively, under the assumption that 50% of total capacity could possibly be dedicated to COVID-19 patients (Australian Institute of Health and Welfare, 2019). The forecasted daily case counts are shown in Figure 3—figure supplement 1.\nFigure 3—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in Australia from 1 March to 13 April 2020 (grey bars) overlaid by daily case counts estimated from the forecasting model up to April 13 and projected forward from 14 to 28 April inclusive.\nInner shading = 50% confidence intervals. Outer shading = 95% confidence intervals. Note that forecasting model estimates prior to 13 April — the last recorded data point at the time of analysis (indicated by the dashed grey line) — use data up to and including the previous day. Black dots show the number of new daily cases of COVID-19 reported from 14 to 28 April.\n\nTimeline of the Australian epidemic\nAustralia took an early and precautionary approach to COVID-19. On 1 February, when China was the only country reporting uncontained transmission, Australian authorities restricted all travel from mainland China to Australia, in order to reduce the risk of importation of the virus. Only Australian citizens and residents (and their dependants) were permitted to travel from China to Australia. These individuals were advised to self-quarantine for 14 days from their date of arrival. Further border measures, including enhanced testing and provision of additional advice, were placed on arrivals from other countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020).\nThe day before Australia imposed these restrictions (January 31), 9720 cases of COVID-19 had been reported in mainland China (World Health Organization, 2020c). Australia had so far detected and managed nine imported cases, all with recent travel history from or a direct epidemiological link to Wuhan (Australian Government Department of Health, 2020b). Before the restrictions, Australia was expecting to receive approximately 200,000 air passengers from mainland China during February 2020 (Australian Bureau of Statistics, 2019). Travel numbers fell dramatically following the imposed travel restrictions.\nThese restrictions were not intended (and highly unlikely [Errett et al., 2020]) to prevent the ultimate importation of COVID-19 into Australia. Their purpose was to delay the establishment of an epidemic, buying valuable time for health authorities to plan and prepare.\nDuring the month of February, with extensive testing and case targeted interventions (case isolation and contact quarantine) initiated from 29 January (Australian Government Department of Health, 2020d), Australia detected and managed only 12 cases. Meanwhile, globally, the geographic extent of transmission and daily counts of confirmed cases and deaths continued to increase drastically (World Health Organization, 2020d). In early March, Australia extended travel restrictions to a number of countries with large uncontained outbreaks, namely Iran (as of 1 March) (Commonwealth Government of Australia, 2020a), South Korea (as of 5 March) (Commonwealth Government of Australia, 2020b) and Italy (as of 11 March) (Commonwealth Government of Australia, 2020c).\nDespite these measures, the daily case counts rose sharply in Australia during the first half of March. While the vast majority of these cases were connected to travellers returning to Australia from overseas, localised community transmission had been reported in areas of Sydney (NSW) and Melbourne (VIC) (Australian Government Department of Health, 2020c). Crude plots of the cumulative number of cases by country showed Australia on an early trajectory similar to the outbreaks experienced in China, Europe and the United States, where health systems had become or were becoming overwhelmed (Australian Government Department of Health, 2020f).\nFrom 16 March, the Australian Government progressively implemented a range of social distancing measures in order to reduce and prevent further community transmission (Commonwealth Government of Australia, 2020d). The day before, authorities had imposed a self-quarantine requirement on all international arrivals (Commonwealth Government of Australia, 2020e). On 19 March, Australia closed its borders to all non-citizens and non-residents (Commonwealth Government of Australia, 2020f), and on March 27, moved to a policy of mandatory quarantine for any returning citizens and residents (Commonwealth Government of Australia, 2020g). By 29 March, social distancing measures had been escalated to the extent that all Australians were strongly advised to leave their homes only for limited essential activities and public gatherings were limited to two people (Commonwealth Government of Australia, 2020h).\nBy late March, daily counts of new cases appeared to be declining, suggesting that these measures had successfully reduced transmission.\n\nQuantifying the impact of the response\nQuantifying changes in the rate of spread of infection over the course of an epidemic is critical for monitoring the collective impact of public health interventions and forecasting the short-term clinical burden. A key indicator of transmission in context is the effective reproduction number (R𝑒𝑓𝑓) — the average number of secondary infections caused by an infected individual in the presence of public health interventions and for which no assumption of 100% susceptibility is made. If control efforts are able to bring R𝑒𝑓𝑓 below 1, then on average there will be a decline in the number of new cases reported. The decline will become apparent after a delay of approximately one incubation period plus time to case detection and reporting following implementation of the control measure (i.e., at least two weeks).\nUsing case counts from the Australian national COVID-19 database, we estimated R𝑒𝑓𝑓 over time for each Australian state from 24 February to 5 April 2020 (Figure 2). We used a statistical method that estimates time-varying R𝑒𝑓𝑓 by using an optimally selected moving average window (according to the continuous ranked probability score) to smooth the curve and reduce the impact of localised clusters and outbreaks that may cause large fluctuations (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020). Importantly, the method accounts for time delays between illness onset and case notification. Incorporation of this lag is critical for accurate interpretation of the most recent data in the analysis, to be sure that an observed drop in the number of reported cases reflects an actual drop in case numbers.\nResults show that R𝑒𝑓𝑓 has likely been below one in each Australian state since early-to-mid March. These estimates are geographically averaged results over large areas and it is possible that R𝑒𝑓𝑓 was much higher than one in a number of localised settings (see Figure 2). The estimated time-varying R𝑒𝑓𝑓 value is based on cases that have been identified as a result of local transmission, whereas imported cases only contribute to the force of infection. Imported and locally acquired cases were assumed to be equally infectious. The method for estimating R𝑒𝑓𝑓 is sensitive to this assumption. Hence, we performed a sensitivity analysis to assess the impact of stepwise reductions in the infectiousness of imported cases on R𝑒𝑓𝑓 as a result of quarantine measures implemented over time (see Figure 2—figure supplement 1, Figure 2—figure supplement 2, and Figure 2—figure supplement 3). The sensitivity analyses suggest that R𝑒𝑓𝑓 may well have dropped below one later than shown in Figure 2.\nIn Victoria and New South Wales, the two Australian states with a substantial number of local cases, the effective reproduction number likely dropped from marginally above one to well below one within a two week period (considering both our main result and those from the sensitivity analyses) coinciding with the implementation of social distancing measures. A comparable trend was observed in New Zealand and many Western European countries, including France, Spain and Germany (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020), where similar national, stage-wise social distancing policies were enacted (Flaxman et al., 2020). However, most of these European countries experienced widespread community transmission prior to the implementation of social distancing measures, with R𝑒𝑓𝑓 estimates reaching between 1.5 and 2 in early March and declining over a longer period (three to four weeks) relative to Australia.\n\nForecasting the clinical burden\nNext we used our estimates of time-varying R𝑒𝑓𝑓 to forecast the short-term clinical burden in Australia. Estimates were input into a mathematical model of disease dynamics that was extended to account for imported cases. A sequential Monte Carlo method was used to infer the model parameters and appropriately capture the uncertainty (Moss et al., 2019a), conditional on each of a number of sampled R𝑒𝑓𝑓 trajectories up to 5 April, from which point they were assumed to be constant. The model was subsequently projected forward from April 14 to April 28, to forecast the number of reported cases, assuming a symptomatic detection probability of 80%.\nThe number of new daily hospitalisations and ICU admissions were estimated from recently observed and forecast case counts. Specifically, the age distribution of projected cases, and age-specific probabilities of hospitalisation and ICU admission, were extracted from Australian age-specific data on confirmed cases, assuming that this distribution would remain unchanged (see Table 1). In order to calculate the number of occupied ward/ICU beds per day, length-of-stay in a ward bed and ICU bed were assumed to be Gamma distributed with means (SD) of 11 (3.42) days and 14 (5.22) days, respectively. Our results indicated that with the public health interventions in place as of 13 April, Australia’s hospital ward and ICU occupancy would remain well below capacity thresholds over the period from 14 to 28 April.\nTable 1. Age-specific proportions of confirmed cases extracted from the Australian national COVID-19 database and age-specific estimates of the probability of hospitalisation and ICU admission for confirmed cases.\nAge Proportion of cases Pr(hospitalisation | confirmed case) Pr(ICU admission | confirmed case)\n0-9 0.0102 0.1475 0.0000\n10-18 0.0186 0.1081 0.0090\n19-29 0.2258 0.0504 0.0007\n30-39 0.1587 0.0865 0.0074\n40-49 0.1291 0.0947 0.0208\n50-59 0.1550 0.1112 0.0173\n60-69 0.1686 0.1529 0.0318\n70-79 0.1050 0.2440 0.0558\n80+ 0.0290 0.3815 0.0462\n\nConclusions\nOur analysis suggests that Australia’s combined strategy of early, targeted management of the risk of importation, case targeted interventions, and broad-scale social distancing measures applied prior to the onset of (detected) widespread community transmission has substantially mitigated the first wave of COVID-19. More detailed analyses are required to assess the relative impact of specific response measures, and this information will be crucial for the next phase of response planning. Other factors, such as temperature, humidity and population density may influence transmission of SARS-CoV-2 (Kissler et al., 2020). Whether these factors have played a role in the relative control of SARS-CoV-2 in some countries, remains an open question. Noting that epidemics are established in both the northern and southern hemispheres, it may be possible to gain insight into such factors over the next six months, via for example a comparative analysis of transmission in Australia and Europe.\nWe further anticipated that the Australian health care system was well positioned to manage the projected COVID-19 case loads over the forecast period (up to 28 April). Ongoing situational assessment and monitoring of forecast hospital and ICU demand will be essential for managing possible future relaxation of broad-scale community interventions. Vigilance for localised increases in epidemic activity and in particular for outbreaks in vulnerable populations such as residential aged care facilities, where a high proportion of cases are likely to be severe, must be maintained.\nOne largely unknown factor at present is the proportion of SARS-CoV-2 infections that are asymptomatic, mild or undiagnosed. Even if this number is high, the Australian population would still be largely susceptible to infection. Accordingly, complete relaxation of the measures currently in place would see a rapid resurgence in epidemic activity. This problem is not unique to Australia. Many countries with intensive social distancing measures in place are starting to grapple with their options and time frames for a gradual return to relative normalcy (Gottlieb et al., 2020).\nThere are difficult decisions ahead for governments, and for now Australia is one of the few countries fortunate enough to be able to plan the next steps from a position of relative calm as opposed to crisis."}
LitCovid-PD-GO-BP
{"project":"LitCovid-PD-GO-BP","denotations":[{"id":"T2","span":{"begin":5842,"end":5854},"obj":"http://purl.obolibrary.org/obo/GO_0000003"},{"id":"T3","span":{"begin":6260,"end":6272},"obj":"http://purl.obolibrary.org/obo/GO_0000003"},{"id":"T4","span":{"begin":6827,"end":6839},"obj":"http://purl.obolibrary.org/obo/GO_0000003"},{"id":"T5","span":{"begin":7246,"end":7258},"obj":"http://purl.obolibrary.org/obo/GO_0000003"},{"id":"T6","span":{"begin":7800,"end":7812},"obj":"http://purl.obolibrary.org/obo/GO_0000003"},{"id":"T7","span":{"begin":8219,"end":8231},"obj":"http://purl.obolibrary.org/obo/GO_0000003"},{"id":"T8","span":{"begin":8773,"end":8785},"obj":"http://purl.obolibrary.org/obo/GO_0000003"},{"id":"T9","span":{"begin":9192,"end":9204},"obj":"http://purl.obolibrary.org/obo/GO_0000003"},{"id":"T10","span":{"begin":15502,"end":15514},"obj":"http://purl.obolibrary.org/obo/GO_0000003"},{"id":"T11","span":{"begin":18026,"end":18038},"obj":"http://purl.obolibrary.org/obo/GO_0000003"}],"text":"Introduction\nA small cluster of cases of the disease now known as COVID-19 was first reported on December 29, 2019, in the Chinese city of Wuhan (World Health Organization, 2020a). By early May 2020, the disease had spread to all global regions, and overwhelmed some the world’s most developed health systems. More than 2.8 million cases and 260,000 deaths had been confirmed globally, and the vast majority of countries with confirmed cases were reporting escalating transmission (World Health Organization, 2020b).\nAs of 1 May 2020, there were 6808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. Encouragingly, the daily count of new confirmed cases had been declining since late March 2020, with 308 cases reported nationally since 14 April (Australian Government Department of Health, 2020a). This suggests that Australia has (to date) avoided a “worst-case” scenario — one where planning models estimated a peak daily demand for 35,000 ICU beds by around May 2020, far exceeding the health system’s capacity of around 2,200 ICU beds (Moss et al., 2020).\nThe first wave of COVID-19 epidemics, and the government and public responses to them, have varied vastly across the globe. For example, many European countries and the United States are in the midst of explosive outbreaks with overwhelmed health systems (Remuzzi and Remuzzi, 2020; The Lancet, 2020). Meanwhile, countries such as Singapore and South Korea had early success in containing the spread, partly attributed to their extensive surveillance efforts and case targeted interventions (Ng et al., 2020; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention, 2020). However, despite those early successes, Singapore has recently taken additional steps to further limit transmission in the face of increasing importations and community spread (Government of Singapore, 2020). Other locations in the region, including Taiwan, Hong Kong and New Zealand, have had similar epidemic experiences, achieving control through a combination of border, case targeted and social distancing measures.\nAnalysing key epidemiological and response factors — such as the intensity and timing of public health interventions — that contribute to individual country experiences of COVID-19 will assist in the next stage of response planning globally.\nHere we describe the course of the COVID-19 epidemic and public health response in Australia from 22 January up to mid-April 2020 (summarised in Figure 1). We then quantify the impact of the public health response on disease transmission (Figure 2) and forecast the short-term health system demand from COVID-19 patients (Figure 3).\nFigure 1. Time series of new daily confirmed cases of COVID-19 in Australia by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDates of selected key border and social distancing measures implemented by Australian authorities are indicated by annotations above the plotted case counts. These measures were in addition to case targeted interventions (case isolation and contact quarantine) and further border measures, including enhanced testing and provision of advice, on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note that Australian citizens and residents (and their dependants) were exempt from travel restrictions, but upon returning to Australia were required to quarantine for 14 days from the date of arrival. A full timeline of social distancing and border measures is provided in Figure 1—figure supplement 2.\nFigure 1—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in each Australian state/territory by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDetails on the epidemiological characteristics of locally and overseas acquired infections are available in the Australian Department of Health fortnightly epidemiological reports (Australian Government Department of Health, 2020e).\nFigure 1—figure supplement 2. Timeline of border and social distancing measures implemented in Australia up to 4 April 2020.\nThese measures were in addition to case targeted interventions, specifically case isolation and quarantine of their contacts. Contact tracing was initiated from 29 January 2020 and was performed by public health officials. Note 1: Between 1 February and 15 March, further border measures were introduced, including enhanced testing and provision of advice on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note 2: Australian citizens and residents (and their dependants) were exempt from travel restrictions but upon returning to Australia were required to quarantine for 14 days from the date of arrival. Note 3: School attendance is reported to have reduce substantially following government recommendations to keep children from school (National Centre for Immunisation Research and Surveillance, 2020), and in some cases, prior to these announcements (Carey, 2020). It should also be noted that school holidays in some states/territories overlapped with the restriction periods (late March and early April). Note 4: The use of face masks by the general public was not recommended at any time during the analysis period. Note 5: Personal hygiene measures and the ‘1.5 m distancing rule’ were promoted to the general public through television, print, radio and social media campaigns commissioned by national and state governments.\nFigure 2. Time-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020.\nConfidence in the estimated values is indicated by shading with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Not presented are the Australian Capital Territory (ACT), Northern Territory (NT) and Tasmania (TAS), as these states/territories had insufficient local transmission. The uncertainty in the R𝑒𝑓𝑓 estimates represent variability in a population-level average as a result of imperfect data, rather than individual-level heterogeneity in transmission (i.e., the variation in the number of secondary cases generated by each case).\nFigure 2—figure supplement 1. Sensitivity analysis 1 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 90%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 2. Sensitivity analysis 2 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 80%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 3. Sensitivity analysis 3 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed 50%, 20%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 3. Forecasted daily hospital ward (left) and intensive care unit (right) occupancy (dark ribbons = 50% confidence intervals; light ribbons = 95% confidence intervals) from 17 March to 28 April.\nOccupancy = the number of beds occupied by COVID-19 patients on a given day. Black dots indicate the reported ward and ICU occupancy available from the Australian national COVID-19 database at the time. These data were retrospectively updated where complete data were available (red crosses). Australian health system ward and ICU bed capacities are estimated to be over 25,000 and 1,100, respectively, under the assumption that 50% of total capacity could possibly be dedicated to COVID-19 patients (Australian Institute of Health and Welfare, 2019). The forecasted daily case counts are shown in Figure 3—figure supplement 1.\nFigure 3—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in Australia from 1 March to 13 April 2020 (grey bars) overlaid by daily case counts estimated from the forecasting model up to April 13 and projected forward from 14 to 28 April inclusive.\nInner shading = 50% confidence intervals. Outer shading = 95% confidence intervals. Note that forecasting model estimates prior to 13 April — the last recorded data point at the time of analysis (indicated by the dashed grey line) — use data up to and including the previous day. Black dots show the number of new daily cases of COVID-19 reported from 14 to 28 April.\n\nTimeline of the Australian epidemic\nAustralia took an early and precautionary approach to COVID-19. On 1 February, when China was the only country reporting uncontained transmission, Australian authorities restricted all travel from mainland China to Australia, in order to reduce the risk of importation of the virus. Only Australian citizens and residents (and their dependants) were permitted to travel from China to Australia. These individuals were advised to self-quarantine for 14 days from their date of arrival. Further border measures, including enhanced testing and provision of additional advice, were placed on arrivals from other countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020).\nThe day before Australia imposed these restrictions (January 31), 9720 cases of COVID-19 had been reported in mainland China (World Health Organization, 2020c). Australia had so far detected and managed nine imported cases, all with recent travel history from or a direct epidemiological link to Wuhan (Australian Government Department of Health, 2020b). Before the restrictions, Australia was expecting to receive approximately 200,000 air passengers from mainland China during February 2020 (Australian Bureau of Statistics, 2019). Travel numbers fell dramatically following the imposed travel restrictions.\nThese restrictions were not intended (and highly unlikely [Errett et al., 2020]) to prevent the ultimate importation of COVID-19 into Australia. Their purpose was to delay the establishment of an epidemic, buying valuable time for health authorities to plan and prepare.\nDuring the month of February, with extensive testing and case targeted interventions (case isolation and contact quarantine) initiated from 29 January (Australian Government Department of Health, 2020d), Australia detected and managed only 12 cases. Meanwhile, globally, the geographic extent of transmission and daily counts of confirmed cases and deaths continued to increase drastically (World Health Organization, 2020d). In early March, Australia extended travel restrictions to a number of countries with large uncontained outbreaks, namely Iran (as of 1 March) (Commonwealth Government of Australia, 2020a), South Korea (as of 5 March) (Commonwealth Government of Australia, 2020b) and Italy (as of 11 March) (Commonwealth Government of Australia, 2020c).\nDespite these measures, the daily case counts rose sharply in Australia during the first half of March. While the vast majority of these cases were connected to travellers returning to Australia from overseas, localised community transmission had been reported in areas of Sydney (NSW) and Melbourne (VIC) (Australian Government Department of Health, 2020c). Crude plots of the cumulative number of cases by country showed Australia on an early trajectory similar to the outbreaks experienced in China, Europe and the United States, where health systems had become or were becoming overwhelmed (Australian Government Department of Health, 2020f).\nFrom 16 March, the Australian Government progressively implemented a range of social distancing measures in order to reduce and prevent further community transmission (Commonwealth Government of Australia, 2020d). The day before, authorities had imposed a self-quarantine requirement on all international arrivals (Commonwealth Government of Australia, 2020e). On 19 March, Australia closed its borders to all non-citizens and non-residents (Commonwealth Government of Australia, 2020f), and on March 27, moved to a policy of mandatory quarantine for any returning citizens and residents (Commonwealth Government of Australia, 2020g). By 29 March, social distancing measures had been escalated to the extent that all Australians were strongly advised to leave their homes only for limited essential activities and public gatherings were limited to two people (Commonwealth Government of Australia, 2020h).\nBy late March, daily counts of new cases appeared to be declining, suggesting that these measures had successfully reduced transmission.\n\nQuantifying the impact of the response\nQuantifying changes in the rate of spread of infection over the course of an epidemic is critical for monitoring the collective impact of public health interventions and forecasting the short-term clinical burden. A key indicator of transmission in context is the effective reproduction number (R𝑒𝑓𝑓) — the average number of secondary infections caused by an infected individual in the presence of public health interventions and for which no assumption of 100% susceptibility is made. If control efforts are able to bring R𝑒𝑓𝑓 below 1, then on average there will be a decline in the number of new cases reported. The decline will become apparent after a delay of approximately one incubation period plus time to case detection and reporting following implementation of the control measure (i.e., at least two weeks).\nUsing case counts from the Australian national COVID-19 database, we estimated R𝑒𝑓𝑓 over time for each Australian state from 24 February to 5 April 2020 (Figure 2). We used a statistical method that estimates time-varying R𝑒𝑓𝑓 by using an optimally selected moving average window (according to the continuous ranked probability score) to smooth the curve and reduce the impact of localised clusters and outbreaks that may cause large fluctuations (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020). Importantly, the method accounts for time delays between illness onset and case notification. Incorporation of this lag is critical for accurate interpretation of the most recent data in the analysis, to be sure that an observed drop in the number of reported cases reflects an actual drop in case numbers.\nResults show that R𝑒𝑓𝑓 has likely been below one in each Australian state since early-to-mid March. These estimates are geographically averaged results over large areas and it is possible that R𝑒𝑓𝑓 was much higher than one in a number of localised settings (see Figure 2). The estimated time-varying R𝑒𝑓𝑓 value is based on cases that have been identified as a result of local transmission, whereas imported cases only contribute to the force of infection. Imported and locally acquired cases were assumed to be equally infectious. The method for estimating R𝑒𝑓𝑓 is sensitive to this assumption. Hence, we performed a sensitivity analysis to assess the impact of stepwise reductions in the infectiousness of imported cases on R𝑒𝑓𝑓 as a result of quarantine measures implemented over time (see Figure 2—figure supplement 1, Figure 2—figure supplement 2, and Figure 2—figure supplement 3). The sensitivity analyses suggest that R𝑒𝑓𝑓 may well have dropped below one later than shown in Figure 2.\nIn Victoria and New South Wales, the two Australian states with a substantial number of local cases, the effective reproduction number likely dropped from marginally above one to well below one within a two week period (considering both our main result and those from the sensitivity analyses) coinciding with the implementation of social distancing measures. A comparable trend was observed in New Zealand and many Western European countries, including France, Spain and Germany (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020), where similar national, stage-wise social distancing policies were enacted (Flaxman et al., 2020). However, most of these European countries experienced widespread community transmission prior to the implementation of social distancing measures, with R𝑒𝑓𝑓 estimates reaching between 1.5 and 2 in early March and declining over a longer period (three to four weeks) relative to Australia.\n\nForecasting the clinical burden\nNext we used our estimates of time-varying R𝑒𝑓𝑓 to forecast the short-term clinical burden in Australia. Estimates were input into a mathematical model of disease dynamics that was extended to account for imported cases. A sequential Monte Carlo method was used to infer the model parameters and appropriately capture the uncertainty (Moss et al., 2019a), conditional on each of a number of sampled R𝑒𝑓𝑓 trajectories up to 5 April, from which point they were assumed to be constant. The model was subsequently projected forward from April 14 to April 28, to forecast the number of reported cases, assuming a symptomatic detection probability of 80%.\nThe number of new daily hospitalisations and ICU admissions were estimated from recently observed and forecast case counts. Specifically, the age distribution of projected cases, and age-specific probabilities of hospitalisation and ICU admission, were extracted from Australian age-specific data on confirmed cases, assuming that this distribution would remain unchanged (see Table 1). In order to calculate the number of occupied ward/ICU beds per day, length-of-stay in a ward bed and ICU bed were assumed to be Gamma distributed with means (SD) of 11 (3.42) days and 14 (5.22) days, respectively. Our results indicated that with the public health interventions in place as of 13 April, Australia’s hospital ward and ICU occupancy would remain well below capacity thresholds over the period from 14 to 28 April.\nTable 1. Age-specific proportions of confirmed cases extracted from the Australian national COVID-19 database and age-specific estimates of the probability of hospitalisation and ICU admission for confirmed cases.\nAge Proportion of cases Pr(hospitalisation | confirmed case) Pr(ICU admission | confirmed case)\n0-9 0.0102 0.1475 0.0000\n10-18 0.0186 0.1081 0.0090\n19-29 0.2258 0.0504 0.0007\n30-39 0.1587 0.0865 0.0074\n40-49 0.1291 0.0947 0.0208\n50-59 0.1550 0.1112 0.0173\n60-69 0.1686 0.1529 0.0318\n70-79 0.1050 0.2440 0.0558\n80+ 0.0290 0.3815 0.0462\n\nConclusions\nOur analysis suggests that Australia’s combined strategy of early, targeted management of the risk of importation, case targeted interventions, and broad-scale social distancing measures applied prior to the onset of (detected) widespread community transmission has substantially mitigated the first wave of COVID-19. More detailed analyses are required to assess the relative impact of specific response measures, and this information will be crucial for the next phase of response planning. Other factors, such as temperature, humidity and population density may influence transmission of SARS-CoV-2 (Kissler et al., 2020). Whether these factors have played a role in the relative control of SARS-CoV-2 in some countries, remains an open question. Noting that epidemics are established in both the northern and southern hemispheres, it may be possible to gain insight into such factors over the next six months, via for example a comparative analysis of transmission in Australia and Europe.\nWe further anticipated that the Australian health care system was well positioned to manage the projected COVID-19 case loads over the forecast period (up to 28 April). Ongoing situational assessment and monitoring of forecast hospital and ICU demand will be essential for managing possible future relaxation of broad-scale community interventions. Vigilance for localised increases in epidemic activity and in particular for outbreaks in vulnerable populations such as residential aged care facilities, where a high proportion of cases are likely to be severe, must be maintained.\nOne largely unknown factor at present is the proportion of SARS-CoV-2 infections that are asymptomatic, mild or undiagnosed. Even if this number is high, the Australian population would still be largely susceptible to infection. Accordingly, complete relaxation of the measures currently in place would see a rapid resurgence in epidemic activity. This problem is not unique to Australia. Many countries with intensive social distancing measures in place are starting to grapple with their options and time frames for a gradual return to relative normalcy (Gottlieb et al., 2020).\nThere are difficult decisions ahead for governments, and for now Australia is one of the few countries fortunate enough to be able to plan the next steps from a position of relative calm as opposed to crisis."}
LitCovid-PubTator
{"project":"LitCovid-PubTator","denotations":[{"id":"12","span":{"begin":66,"end":74},"obj":"Disease"},{"id":"13","span":{"begin":350,"end":356},"obj":"Disease"},{"id":"16","span":{"begin":570,"end":578},"obj":"Disease"},{"id":"17","span":{"begin":610,"end":614},"obj":"Disease"},{"id":"19","span":{"begin":1112,"end":1120},"obj":"Disease"},{"id":"21","span":{"begin":2337,"end":2345},"obj":"Disease"},{"id":"25","span":{"begin":2719,"end":2727},"obj":"Species"},{"id":"26","span":{"begin":2442,"end":2450},"obj":"Disease"},{"id":"27","span":{"begin":2710,"end":2718},"obj":"Disease"},{"id":"29","span":{"begin":3822,"end":3830},"obj":"Disease"},{"id":"31","span":{"begin":4102,"end":4112},"obj":"Disease"},{"id":"33","span":{"begin":5176,"end":5184},"obj":"Species"},{"id":"35","span":{"begin":2795,"end":2803},"obj":"Disease"},{"id":"37","span":{"begin":6857,"end":6865},"obj":"Disease"},{"id":"39","span":{"begin":7830,"end":7838},"obj":"Disease"},{"id":"41","span":{"begin":8803,"end":8811},"obj":"Disease"},{"id":"43","span":{"begin":5872,"end":5880},"obj":"Disease"},{"id":"45","span":{"begin":10547,"end":10555},"obj":"Disease"},{"id":"47","span":{"begin":11075,"end":11083},"obj":"Disease"},{"id":"53","span":{"begin":9896,"end":9904},"obj":"Species"},{"id":"54","span":{"begin":10335,"end":10343},"obj":"Species"},{"id":"55","span":{"begin":9887,"end":9895},"obj":"Disease"},{"id":"56","span":{"begin":10016,"end":10024},"obj":"Disease"},{"id":"57","span":{"begin":10326,"end":10334},"obj":"Disease"},{"id":"59","span":{"begin":11205,"end":11213},"obj":"Disease"},{"id":"61","span":{"begin":11934,"end":11942},"obj":"Disease"},{"id":"63","span":{"begin":12584,"end":12592},"obj":"Disease"},{"id":"65","span":{"begin":13084,"end":13090},"obj":"Disease"},{"id":"67","span":{"begin":14997,"end":15003},"obj":"Species"},{"id":"71","span":{"begin":15273,"end":15282},"obj":"Disease"},{"id":"72","span":{"begin":15553,"end":15573},"obj":"Disease"},{"id":"73","span":{"begin":15587,"end":15595},"obj":"Disease"},{"id":"75","span":{"begin":16093,"end":16101},"obj":"Disease"},{"id":"77","span":{"begin":17364,"end":17373},"obj":"Disease"},{"id":"79","span":{"begin":20489,"end":20497},"obj":"Disease"},{"id":"83","span":{"begin":21580,"end":21590},"obj":"Species"},{"id":"84","span":{"begin":21683,"end":21693},"obj":"Species"},{"id":"85","span":{"begin":21297,"end":21305},"obj":"Disease"},{"id":"87","span":{"begin":22089,"end":22097},"obj":"Disease"},{"id":"90","span":{"begin":22624,"end":22645},"obj":"Disease"},{"id":"91","span":{"begin":22783,"end":22792},"obj":"Disease"}],"attributes":[{"id":"A12","pred":"tao:has_database_id","subj":"12","obj":"MESH:C000657245"},{"id":"A13","pred":"tao:has_database_id","subj":"13","obj":"MESH:D003643"},{"id":"A16","pred":"tao:has_database_id","subj":"16","obj":"MESH:C000657245"},{"id":"A17","pred":"tao:has_database_id","subj":"17","obj":"MESH:D003643"},{"id":"A19","pred":"tao:has_database_id","subj":"19","obj":"MESH:C000657245"},{"id":"A21","pred":"tao:has_database_id","subj":"21","obj":"MESH:C000657245"},{"id":"A25","pred":"tao:has_database_id","subj":"25","obj":"Tax:9606"},{"id":"A26","pred":"tao:has_database_id","subj":"26","obj":"MESH:C000657245"},{"id":"A27","pred":"tao:has_database_id","subj":"27","obj":"MESH:C000657245"},{"id":"A29","pred":"tao:has_database_id","subj":"29","obj":"MESH:C000657245"},{"id":"A31","pred":"tao:has_database_id","subj":"31","obj":"MESH:D007239"},{"id":"A33","pred":"tao:has_database_id","subj":"33","obj":"Tax:9606"},{"id":"A35","pred":"tao:has_database_id","subj":"35","obj":"MESH:C000657245"},{"id":"A37","pred":"tao:has_database_id","subj":"37","obj":"MESH:C000657245"},{"id":"A39","pred":"tao:has_database_id","subj":"39","obj":"MESH:C000657245"},{"id":"A41","pred":"tao:has_database_id","subj":"41","obj":"MESH:C000657245"},{"id":"A43","pred":"tao:has_database_id","subj":"43","obj":"MESH:C000657245"},{"id":"A45","pred":"tao:has_database_id","subj":"45","obj":"MESH:C000657245"},{"id":"A47","pred":"tao:has_database_id","subj":"47","obj":"MESH:C000657245"},{"id":"A53","pred":"tao:has_database_id","subj":"53","obj":"Tax:9606"},{"id":"A54","pred":"tao:has_database_id","subj":"54","obj":"Tax:9606"},{"id":"A55","pred":"tao:has_database_id","subj":"55","obj":"MESH:C000657245"},{"id":"A56","pred":"tao:has_database_id","subj":"56","obj":"MESH:C000657245"},{"id":"A57","pred":"tao:has_database_id","subj":"57","obj":"MESH:C000657245"},{"id":"A59","pred":"tao:has_database_id","subj":"59","obj":"MESH:C000657245"},{"id":"A61","pred":"tao:has_database_id","subj":"61","obj":"MESH:C000657245"},{"id":"A63","pred":"tao:has_database_id","subj":"63","obj":"MESH:C000657245"},{"id":"A65","pred":"tao:has_database_id","subj":"65","obj":"MESH:D003643"},{"id":"A67","pred":"tao:has_database_id","subj":"67","obj":"Tax:9606"},{"id":"A71","pred":"tao:has_database_id","subj":"71","obj":"MESH:D007239"},{"id":"A72","pred":"tao:has_database_id","subj":"72","obj":"MESH:D060085"},{"id":"A73","pred":"tao:has_database_id","subj":"73","obj":"MESH:D007239"},{"id":"A75","pred":"tao:has_database_id","subj":"75","obj":"MESH:C000657245"},{"id":"A77","pred":"tao:has_database_id","subj":"77","obj":"MESH:D007239"},{"id":"A79","pred":"tao:has_database_id","subj":"79","obj":"MESH:C000657245"},{"id":"A83","pred":"tao:has_database_id","subj":"83","obj":"Tax:2697049"},{"id":"A84","pred":"tao:has_database_id","subj":"84","obj":"Tax:2697049"},{"id":"A85","pred":"tao:has_database_id","subj":"85","obj":"MESH:C000657245"},{"id":"A87","pred":"tao:has_database_id","subj":"87","obj":"MESH:C000657245"},{"id":"A90","pred":"tao:has_database_id","subj":"90","obj":"MESH:C000657245"},{"id":"A91","pred":"tao:has_database_id","subj":"91","obj":"MESH:D007239"}],"namespaces":[{"prefix":"Tax","uri":"https://www.ncbi.nlm.nih.gov/taxonomy/"},{"prefix":"MESH","uri":"https://id.nlm.nih.gov/mesh/"},{"prefix":"Gene","uri":"https://www.ncbi.nlm.nih.gov/gene/"},{"prefix":"CVCL","uri":"https://web.expasy.org/cellosaurus/CVCL_"}],"text":"Introduction\nA small cluster of cases of the disease now known as COVID-19 was first reported on December 29, 2019, in the Chinese city of Wuhan (World Health Organization, 2020a). By early May 2020, the disease had spread to all global regions, and overwhelmed some the world’s most developed health systems. More than 2.8 million cases and 260,000 deaths had been confirmed globally, and the vast majority of countries with confirmed cases were reporting escalating transmission (World Health Organization, 2020b).\nAs of 1 May 2020, there were 6808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. Encouragingly, the daily count of new confirmed cases had been declining since late March 2020, with 308 cases reported nationally since 14 April (Australian Government Department of Health, 2020a). This suggests that Australia has (to date) avoided a “worst-case” scenario — one where planning models estimated a peak daily demand for 35,000 ICU beds by around May 2020, far exceeding the health system’s capacity of around 2,200 ICU beds (Moss et al., 2020).\nThe first wave of COVID-19 epidemics, and the government and public responses to them, have varied vastly across the globe. For example, many European countries and the United States are in the midst of explosive outbreaks with overwhelmed health systems (Remuzzi and Remuzzi, 2020; The Lancet, 2020). Meanwhile, countries such as Singapore and South Korea had early success in containing the spread, partly attributed to their extensive surveillance efforts and case targeted interventions (Ng et al., 2020; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention, 2020). However, despite those early successes, Singapore has recently taken additional steps to further limit transmission in the face of increasing importations and community spread (Government of Singapore, 2020). Other locations in the region, including Taiwan, Hong Kong and New Zealand, have had similar epidemic experiences, achieving control through a combination of border, case targeted and social distancing measures.\nAnalysing key epidemiological and response factors — such as the intensity and timing of public health interventions — that contribute to individual country experiences of COVID-19 will assist in the next stage of response planning globally.\nHere we describe the course of the COVID-19 epidemic and public health response in Australia from 22 January up to mid-April 2020 (summarised in Figure 1). We then quantify the impact of the public health response on disease transmission (Figure 2) and forecast the short-term health system demand from COVID-19 patients (Figure 3).\nFigure 1. Time series of new daily confirmed cases of COVID-19 in Australia by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDates of selected key border and social distancing measures implemented by Australian authorities are indicated by annotations above the plotted case counts. These measures were in addition to case targeted interventions (case isolation and contact quarantine) and further border measures, including enhanced testing and provision of advice, on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note that Australian citizens and residents (and their dependants) were exempt from travel restrictions, but upon returning to Australia were required to quarantine for 14 days from the date of arrival. A full timeline of social distancing and border measures is provided in Figure 1—figure supplement 2.\nFigure 1—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in each Australian state/territory by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDetails on the epidemiological characteristics of locally and overseas acquired infections are available in the Australian Department of Health fortnightly epidemiological reports (Australian Government Department of Health, 2020e).\nFigure 1—figure supplement 2. Timeline of border and social distancing measures implemented in Australia up to 4 April 2020.\nThese measures were in addition to case targeted interventions, specifically case isolation and quarantine of their contacts. Contact tracing was initiated from 29 January 2020 and was performed by public health officials. Note 1: Between 1 February and 15 March, further border measures were introduced, including enhanced testing and provision of advice on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note 2: Australian citizens and residents (and their dependants) were exempt from travel restrictions but upon returning to Australia were required to quarantine for 14 days from the date of arrival. Note 3: School attendance is reported to have reduce substantially following government recommendations to keep children from school (National Centre for Immunisation Research and Surveillance, 2020), and in some cases, prior to these announcements (Carey, 2020). It should also be noted that school holidays in some states/territories overlapped with the restriction periods (late March and early April). Note 4: The use of face masks by the general public was not recommended at any time during the analysis period. Note 5: Personal hygiene measures and the ‘1.5 m distancing rule’ were promoted to the general public through television, print, radio and social media campaigns commissioned by national and state governments.\nFigure 2. Time-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020.\nConfidence in the estimated values is indicated by shading with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Not presented are the Australian Capital Territory (ACT), Northern Territory (NT) and Tasmania (TAS), as these states/territories had insufficient local transmission. The uncertainty in the R𝑒𝑓𝑓 estimates represent variability in a population-level average as a result of imperfect data, rather than individual-level heterogeneity in transmission (i.e., the variation in the number of secondary cases generated by each case).\nFigure 2—figure supplement 1. Sensitivity analysis 1 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 90%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 2. Sensitivity analysis 2 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 80%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 3. Sensitivity analysis 3 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed 50%, 20%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 3. Forecasted daily hospital ward (left) and intensive care unit (right) occupancy (dark ribbons = 50% confidence intervals; light ribbons = 95% confidence intervals) from 17 March to 28 April.\nOccupancy = the number of beds occupied by COVID-19 patients on a given day. Black dots indicate the reported ward and ICU occupancy available from the Australian national COVID-19 database at the time. These data were retrospectively updated where complete data were available (red crosses). Australian health system ward and ICU bed capacities are estimated to be over 25,000 and 1,100, respectively, under the assumption that 50% of total capacity could possibly be dedicated to COVID-19 patients (Australian Institute of Health and Welfare, 2019). The forecasted daily case counts are shown in Figure 3—figure supplement 1.\nFigure 3—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in Australia from 1 March to 13 April 2020 (grey bars) overlaid by daily case counts estimated from the forecasting model up to April 13 and projected forward from 14 to 28 April inclusive.\nInner shading = 50% confidence intervals. Outer shading = 95% confidence intervals. Note that forecasting model estimates prior to 13 April — the last recorded data point at the time of analysis (indicated by the dashed grey line) — use data up to and including the previous day. Black dots show the number of new daily cases of COVID-19 reported from 14 to 28 April.\n\nTimeline of the Australian epidemic\nAustralia took an early and precautionary approach to COVID-19. On 1 February, when China was the only country reporting uncontained transmission, Australian authorities restricted all travel from mainland China to Australia, in order to reduce the risk of importation of the virus. Only Australian citizens and residents (and their dependants) were permitted to travel from China to Australia. These individuals were advised to self-quarantine for 14 days from their date of arrival. Further border measures, including enhanced testing and provision of additional advice, were placed on arrivals from other countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020).\nThe day before Australia imposed these restrictions (January 31), 9720 cases of COVID-19 had been reported in mainland China (World Health Organization, 2020c). Australia had so far detected and managed nine imported cases, all with recent travel history from or a direct epidemiological link to Wuhan (Australian Government Department of Health, 2020b). Before the restrictions, Australia was expecting to receive approximately 200,000 air passengers from mainland China during February 2020 (Australian Bureau of Statistics, 2019). Travel numbers fell dramatically following the imposed travel restrictions.\nThese restrictions were not intended (and highly unlikely [Errett et al., 2020]) to prevent the ultimate importation of COVID-19 into Australia. Their purpose was to delay the establishment of an epidemic, buying valuable time for health authorities to plan and prepare.\nDuring the month of February, with extensive testing and case targeted interventions (case isolation and contact quarantine) initiated from 29 January (Australian Government Department of Health, 2020d), Australia detected and managed only 12 cases. Meanwhile, globally, the geographic extent of transmission and daily counts of confirmed cases and deaths continued to increase drastically (World Health Organization, 2020d). In early March, Australia extended travel restrictions to a number of countries with large uncontained outbreaks, namely Iran (as of 1 March) (Commonwealth Government of Australia, 2020a), South Korea (as of 5 March) (Commonwealth Government of Australia, 2020b) and Italy (as of 11 March) (Commonwealth Government of Australia, 2020c).\nDespite these measures, the daily case counts rose sharply in Australia during the first half of March. While the vast majority of these cases were connected to travellers returning to Australia from overseas, localised community transmission had been reported in areas of Sydney (NSW) and Melbourne (VIC) (Australian Government Department of Health, 2020c). Crude plots of the cumulative number of cases by country showed Australia on an early trajectory similar to the outbreaks experienced in China, Europe and the United States, where health systems had become or were becoming overwhelmed (Australian Government Department of Health, 2020f).\nFrom 16 March, the Australian Government progressively implemented a range of social distancing measures in order to reduce and prevent further community transmission (Commonwealth Government of Australia, 2020d). The day before, authorities had imposed a self-quarantine requirement on all international arrivals (Commonwealth Government of Australia, 2020e). On 19 March, Australia closed its borders to all non-citizens and non-residents (Commonwealth Government of Australia, 2020f), and on March 27, moved to a policy of mandatory quarantine for any returning citizens and residents (Commonwealth Government of Australia, 2020g). By 29 March, social distancing measures had been escalated to the extent that all Australians were strongly advised to leave their homes only for limited essential activities and public gatherings were limited to two people (Commonwealth Government of Australia, 2020h).\nBy late March, daily counts of new cases appeared to be declining, suggesting that these measures had successfully reduced transmission.\n\nQuantifying the impact of the response\nQuantifying changes in the rate of spread of infection over the course of an epidemic is critical for monitoring the collective impact of public health interventions and forecasting the short-term clinical burden. A key indicator of transmission in context is the effective reproduction number (R𝑒𝑓𝑓) — the average number of secondary infections caused by an infected individual in the presence of public health interventions and for which no assumption of 100% susceptibility is made. If control efforts are able to bring R𝑒𝑓𝑓 below 1, then on average there will be a decline in the number of new cases reported. The decline will become apparent after a delay of approximately one incubation period plus time to case detection and reporting following implementation of the control measure (i.e., at least two weeks).\nUsing case counts from the Australian national COVID-19 database, we estimated R𝑒𝑓𝑓 over time for each Australian state from 24 February to 5 April 2020 (Figure 2). We used a statistical method that estimates time-varying R𝑒𝑓𝑓 by using an optimally selected moving average window (according to the continuous ranked probability score) to smooth the curve and reduce the impact of localised clusters and outbreaks that may cause large fluctuations (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020). Importantly, the method accounts for time delays between illness onset and case notification. Incorporation of this lag is critical for accurate interpretation of the most recent data in the analysis, to be sure that an observed drop in the number of reported cases reflects an actual drop in case numbers.\nResults show that R𝑒𝑓𝑓 has likely been below one in each Australian state since early-to-mid March. These estimates are geographically averaged results over large areas and it is possible that R𝑒𝑓𝑓 was much higher than one in a number of localised settings (see Figure 2). The estimated time-varying R𝑒𝑓𝑓 value is based on cases that have been identified as a result of local transmission, whereas imported cases only contribute to the force of infection. Imported and locally acquired cases were assumed to be equally infectious. The method for estimating R𝑒𝑓𝑓 is sensitive to this assumption. Hence, we performed a sensitivity analysis to assess the impact of stepwise reductions in the infectiousness of imported cases on R𝑒𝑓𝑓 as a result of quarantine measures implemented over time (see Figure 2—figure supplement 1, Figure 2—figure supplement 2, and Figure 2—figure supplement 3). The sensitivity analyses suggest that R𝑒𝑓𝑓 may well have dropped below one later than shown in Figure 2.\nIn Victoria and New South Wales, the two Australian states with a substantial number of local cases, the effective reproduction number likely dropped from marginally above one to well below one within a two week period (considering both our main result and those from the sensitivity analyses) coinciding with the implementation of social distancing measures. A comparable trend was observed in New Zealand and many Western European countries, including France, Spain and Germany (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020), where similar national, stage-wise social distancing policies were enacted (Flaxman et al., 2020). However, most of these European countries experienced widespread community transmission prior to the implementation of social distancing measures, with R𝑒𝑓𝑓 estimates reaching between 1.5 and 2 in early March and declining over a longer period (three to four weeks) relative to Australia.\n\nForecasting the clinical burden\nNext we used our estimates of time-varying R𝑒𝑓𝑓 to forecast the short-term clinical burden in Australia. Estimates were input into a mathematical model of disease dynamics that was extended to account for imported cases. A sequential Monte Carlo method was used to infer the model parameters and appropriately capture the uncertainty (Moss et al., 2019a), conditional on each of a number of sampled R𝑒𝑓𝑓 trajectories up to 5 April, from which point they were assumed to be constant. The model was subsequently projected forward from April 14 to April 28, to forecast the number of reported cases, assuming a symptomatic detection probability of 80%.\nThe number of new daily hospitalisations and ICU admissions were estimated from recently observed and forecast case counts. Specifically, the age distribution of projected cases, and age-specific probabilities of hospitalisation and ICU admission, were extracted from Australian age-specific data on confirmed cases, assuming that this distribution would remain unchanged (see Table 1). In order to calculate the number of occupied ward/ICU beds per day, length-of-stay in a ward bed and ICU bed were assumed to be Gamma distributed with means (SD) of 11 (3.42) days and 14 (5.22) days, respectively. Our results indicated that with the public health interventions in place as of 13 April, Australia’s hospital ward and ICU occupancy would remain well below capacity thresholds over the period from 14 to 28 April.\nTable 1. Age-specific proportions of confirmed cases extracted from the Australian national COVID-19 database and age-specific estimates of the probability of hospitalisation and ICU admission for confirmed cases.\nAge Proportion of cases Pr(hospitalisation | confirmed case) Pr(ICU admission | confirmed case)\n0-9 0.0102 0.1475 0.0000\n10-18 0.0186 0.1081 0.0090\n19-29 0.2258 0.0504 0.0007\n30-39 0.1587 0.0865 0.0074\n40-49 0.1291 0.0947 0.0208\n50-59 0.1550 0.1112 0.0173\n60-69 0.1686 0.1529 0.0318\n70-79 0.1050 0.2440 0.0558\n80+ 0.0290 0.3815 0.0462\n\nConclusions\nOur analysis suggests that Australia’s combined strategy of early, targeted management of the risk of importation, case targeted interventions, and broad-scale social distancing measures applied prior to the onset of (detected) widespread community transmission has substantially mitigated the first wave of COVID-19. More detailed analyses are required to assess the relative impact of specific response measures, and this information will be crucial for the next phase of response planning. Other factors, such as temperature, humidity and population density may influence transmission of SARS-CoV-2 (Kissler et al., 2020). Whether these factors have played a role in the relative control of SARS-CoV-2 in some countries, remains an open question. Noting that epidemics are established in both the northern and southern hemispheres, it may be possible to gain insight into such factors over the next six months, via for example a comparative analysis of transmission in Australia and Europe.\nWe further anticipated that the Australian health care system was well positioned to manage the projected COVID-19 case loads over the forecast period (up to 28 April). Ongoing situational assessment and monitoring of forecast hospital and ICU demand will be essential for managing possible future relaxation of broad-scale community interventions. Vigilance for localised increases in epidemic activity and in particular for outbreaks in vulnerable populations such as residential aged care facilities, where a high proportion of cases are likely to be severe, must be maintained.\nOne largely unknown factor at present is the proportion of SARS-CoV-2 infections that are asymptomatic, mild or undiagnosed. Even if this number is high, the Australian population would still be largely susceptible to infection. Accordingly, complete relaxation of the measures currently in place would see a rapid resurgence in epidemic activity. This problem is not unique to Australia. Many countries with intensive social distancing measures in place are starting to grapple with their options and time frames for a gradual return to relative normalcy (Gottlieb et al., 2020).\nThere are difficult decisions ahead for governments, and for now Australia is one of the few countries fortunate enough to be able to plan the next steps from a position of relative calm as opposed to crisis."}
LitCovid-sentences
{"project":"LitCovid-sentences","denotations":[{"id":"T10","span":{"begin":0,"end":12},"obj":"Sentence"},{"id":"T11","span":{"begin":13,"end":180},"obj":"Sentence"},{"id":"T12","span":{"begin":181,"end":309},"obj":"Sentence"},{"id":"T13","span":{"begin":310,"end":516},"obj":"Sentence"},{"id":"T14","span":{"begin":517,"end":592},"obj":"Sentence"},{"id":"T15","span":{"begin":593,"end":632},"obj":"Sentence"},{"id":"T16","span":{"begin":633,"end":831},"obj":"Sentence"},{"id":"T17","span":{"begin":832,"end":1093},"obj":"Sentence"},{"id":"T18","span":{"begin":1094,"end":1217},"obj":"Sentence"},{"id":"T19","span":{"begin":1218,"end":1395},"obj":"Sentence"},{"id":"T20","span":{"begin":1396,"end":1743},"obj":"Sentence"},{"id":"T21","span":{"begin":1744,"end":1952},"obj":"Sentence"},{"id":"T22","span":{"begin":1953,"end":2164},"obj":"Sentence"},{"id":"T23","span":{"begin":2165,"end":2406},"obj":"Sentence"},{"id":"T24","span":{"begin":2407,"end":2562},"obj":"Sentence"},{"id":"T25","span":{"begin":2563,"end":2739},"obj":"Sentence"},{"id":"T26","span":{"begin":2740,"end":2749},"obj":"Sentence"},{"id":"T27","span":{"begin":2751,"end":2972},"obj":"Sentence"},{"id":"T28","span":{"begin":2973,"end":3130},"obj":"Sentence"},{"id":"T29","span":{"begin":3131,"end":3441},"obj":"Sentence"},{"id":"T30","span":{"begin":3442,"end":3644},"obj":"Sentence"},{"id":"T31","span":{"begin":3645,"end":3746},"obj":"Sentence"},{"id":"T32","span":{"begin":3747,"end":3776},"obj":"Sentence"},{"id":"T33","span":{"begin":3778,"end":4021},"obj":"Sentence"},{"id":"T34","span":{"begin":4022,"end":4254},"obj":"Sentence"},{"id":"T35","span":{"begin":4255,"end":4284},"obj":"Sentence"},{"id":"T36","span":{"begin":4286,"end":4380},"obj":"Sentence"},{"id":"T37","span":{"begin":4381,"end":4506},"obj":"Sentence"},{"id":"T38","span":{"begin":4507,"end":4603},"obj":"Sentence"},{"id":"T39","span":{"begin":4604,"end":4611},"obj":"Sentence"},{"id":"T40","span":{"begin":4612,"end":4863},"obj":"Sentence"},{"id":"T41","span":{"begin":4864,"end":4871},"obj":"Sentence"},{"id":"T42","span":{"begin":4872,"end":5063},"obj":"Sentence"},{"id":"T43","span":{"begin":5064,"end":5071},"obj":"Sentence"},{"id":"T44","span":{"begin":5072,"end":5327},"obj":"Sentence"},{"id":"T45","span":{"begin":5328,"end":5469},"obj":"Sentence"},{"id":"T46","span":{"begin":5470,"end":5477},"obj":"Sentence"},{"id":"T47","span":{"begin":5478,"end":5581},"obj":"Sentence"},{"id":"T48","span":{"begin":5582,"end":5589},"obj":"Sentence"},{"id":"T49","span":{"begin":5590,"end":5791},"obj":"Sentence"},{"id":"T50","span":{"begin":5792,"end":5801},"obj":"Sentence"},{"id":"T51","span":{"begin":5803,"end":6065},"obj":"Sentence"},{"id":"T52","span":{"begin":6066,"end":6182},"obj":"Sentence"},{"id":"T53","span":{"begin":6183,"end":6301},"obj":"Sentence"},{"id":"T54","span":{"begin":6302,"end":6468},"obj":"Sentence"},{"id":"T55","span":{"begin":6469,"end":6727},"obj":"Sentence"},{"id":"T56","span":{"begin":6728,"end":6757},"obj":"Sentence"},{"id":"T57","span":{"begin":6759,"end":6787},"obj":"Sentence"},{"id":"T58","span":{"begin":6788,"end":7050},"obj":"Sentence"},{"id":"T59","span":{"begin":7051,"end":7168},"obj":"Sentence"},{"id":"T60","span":{"begin":7169,"end":7287},"obj":"Sentence"},{"id":"T61","span":{"begin":7288,"end":7531},"obj":"Sentence"},{"id":"T62","span":{"begin":7532,"end":7700},"obj":"Sentence"},{"id":"T63","span":{"begin":7701,"end":7730},"obj":"Sentence"},{"id":"T64","span":{"begin":7732,"end":7760},"obj":"Sentence"},{"id":"T65","span":{"begin":7761,"end":8023},"obj":"Sentence"},{"id":"T66","span":{"begin":8024,"end":8141},"obj":"Sentence"},{"id":"T67","span":{"begin":8142,"end":8260},"obj":"Sentence"},{"id":"T68","span":{"begin":8261,"end":8504},"obj":"Sentence"},{"id":"T69","span":{"begin":8505,"end":8673},"obj":"Sentence"},{"id":"T70","span":{"begin":8674,"end":8703},"obj":"Sentence"},{"id":"T71","span":{"begin":8705,"end":8733},"obj":"Sentence"},{"id":"T72","span":{"begin":8734,"end":8996},"obj":"Sentence"},{"id":"T73","span":{"begin":8997,"end":9114},"obj":"Sentence"},{"id":"T74","span":{"begin":9115,"end":9233},"obj":"Sentence"},{"id":"T75","span":{"begin":9234,"end":9477},"obj":"Sentence"},{"id":"T76","span":{"begin":9478,"end":9641},"obj":"Sentence"},{"id":"T77","span":{"begin":9642,"end":9651},"obj":"Sentence"},{"id":"T78","span":{"begin":9653,"end":9843},"obj":"Sentence"},{"id":"T79","span":{"begin":9844,"end":9920},"obj":"Sentence"},{"id":"T80","span":{"begin":9921,"end":10046},"obj":"Sentence"},{"id":"T81","span":{"begin":10047,"end":10136},"obj":"Sentence"},{"id":"T82","span":{"begin":10137,"end":10395},"obj":"Sentence"},{"id":"T83","span":{"begin":10396,"end":10471},"obj":"Sentence"},{"id":"T84","span":{"begin":10472,"end":10501},"obj":"Sentence"},{"id":"T85","span":{"begin":10503,"end":10745},"obj":"Sentence"},{"id":"T86","span":{"begin":10746,"end":10787},"obj":"Sentence"},{"id":"T87","span":{"begin":10788,"end":10829},"obj":"Sentence"},{"id":"T88","span":{"begin":10830,"end":11025},"obj":"Sentence"},{"id":"T89","span":{"begin":11026,"end":11113},"obj":"Sentence"},{"id":"T90","span":{"begin":11115,"end":11150},"obj":"Sentence"},{"id":"T91","span":{"begin":11151,"end":11214},"obj":"Sentence"},{"id":"T92","span":{"begin":11215,"end":11433},"obj":"Sentence"},{"id":"T93","span":{"begin":11434,"end":11545},"obj":"Sentence"},{"id":"T94","span":{"begin":11546,"end":11635},"obj":"Sentence"},{"id":"T95","span":{"begin":11636,"end":11853},"obj":"Sentence"},{"id":"T96","span":{"begin":11854,"end":12014},"obj":"Sentence"},{"id":"T97","span":{"begin":12015,"end":12208},"obj":"Sentence"},{"id":"T98","span":{"begin":12209,"end":12387},"obj":"Sentence"},{"id":"T99","span":{"begin":12388,"end":12463},"obj":"Sentence"},{"id":"T100","span":{"begin":12464,"end":12608},"obj":"Sentence"},{"id":"T101","span":{"begin":12609,"end":12734},"obj":"Sentence"},{"id":"T102","span":{"begin":12735,"end":12984},"obj":"Sentence"},{"id":"T103","span":{"begin":12985,"end":13160},"obj":"Sentence"},{"id":"T104","span":{"begin":13161,"end":13497},"obj":"Sentence"},{"id":"T105","span":{"begin":13498,"end":13601},"obj":"Sentence"},{"id":"T106","span":{"begin":13602,"end":13856},"obj":"Sentence"},{"id":"T107","span":{"begin":13857,"end":14144},"obj":"Sentence"},{"id":"T108","span":{"begin":14145,"end":14358},"obj":"Sentence"},{"id":"T109","span":{"begin":14359,"end":14505},"obj":"Sentence"},{"id":"T110","span":{"begin":14506,"end":14779},"obj":"Sentence"},{"id":"T111","span":{"begin":14780,"end":15050},"obj":"Sentence"},{"id":"T112","span":{"begin":15051,"end":15187},"obj":"Sentence"},{"id":"T113","span":{"begin":15189,"end":15227},"obj":"Sentence"},{"id":"T114","span":{"begin":15228,"end":15441},"obj":"Sentence"},{"id":"T115","span":{"begin":15442,"end":15713},"obj":"Sentence"},{"id":"T116","span":{"begin":15714,"end":15841},"obj":"Sentence"},{"id":"T117","span":{"begin":15842,"end":16045},"obj":"Sentence"},{"id":"T118","span":{"begin":16046,"end":16210},"obj":"Sentence"},{"id":"T119","span":{"begin":16211,"end":16611},"obj":"Sentence"},{"id":"T120","span":{"begin":16612,"end":16705},"obj":"Sentence"},{"id":"T121","span":{"begin":16706,"end":16918},"obj":"Sentence"},{"id":"T122","span":{"begin":16919,"end":17018},"obj":"Sentence"},{"id":"T123","span":{"begin":17019,"end":17191},"obj":"Sentence"},{"id":"T124","span":{"begin":17192,"end":17374},"obj":"Sentence"},{"id":"T125","span":{"begin":17375,"end":17449},"obj":"Sentence"},{"id":"T126","span":{"begin":17450,"end":17513},"obj":"Sentence"},{"id":"T127","span":{"begin":17514,"end":17805},"obj":"Sentence"},{"id":"T128","span":{"begin":17806,"end":17910},"obj":"Sentence"},{"id":"T129","span":{"begin":17911,"end":18270},"obj":"Sentence"},{"id":"T130","span":{"begin":18271,"end":18608},"obj":"Sentence"},{"id":"T131","span":{"begin":18609,"end":18897},"obj":"Sentence"},{"id":"T132","span":{"begin":18899,"end":18930},"obj":"Sentence"},{"id":"T133","span":{"begin":18931,"end":19035},"obj":"Sentence"},{"id":"T134","span":{"begin":19036,"end":19151},"obj":"Sentence"},{"id":"T135","span":{"begin":19152,"end":19413},"obj":"Sentence"},{"id":"T136","span":{"begin":19414,"end":19580},"obj":"Sentence"},{"id":"T137","span":{"begin":19581,"end":19704},"obj":"Sentence"},{"id":"T138","span":{"begin":19705,"end":19967},"obj":"Sentence"},{"id":"T139","span":{"begin":19968,"end":20181},"obj":"Sentence"},{"id":"T140","span":{"begin":20182,"end":20395},"obj":"Sentence"},{"id":"T141","span":{"begin":20396,"end":20404},"obj":"Sentence"},{"id":"T142","span":{"begin":20406,"end":20610},"obj":"Sentence"},{"id":"T143","span":{"begin":20611,"end":20709},"obj":"Sentence"},{"id":"T144","span":{"begin":20710,"end":20737},"obj":"Sentence"},{"id":"T145","span":{"begin":20738,"end":20767},"obj":"Sentence"},{"id":"T146","span":{"begin":20768,"end":20797},"obj":"Sentence"},{"id":"T147","span":{"begin":20798,"end":20827},"obj":"Sentence"},{"id":"T148","span":{"begin":20828,"end":20857},"obj":"Sentence"},{"id":"T149","span":{"begin":20858,"end":20887},"obj":"Sentence"},{"id":"T150","span":{"begin":20888,"end":20917},"obj":"Sentence"},{"id":"T151","span":{"begin":20918,"end":20947},"obj":"Sentence"},{"id":"T152","span":{"begin":20948,"end":20975},"obj":"Sentence"},{"id":"T153","span":{"begin":20977,"end":20988},"obj":"Sentence"},{"id":"T154","span":{"begin":20989,"end":21306},"obj":"Sentence"},{"id":"T155","span":{"begin":21307,"end":21481},"obj":"Sentence"},{"id":"T156","span":{"begin":21482,"end":21614},"obj":"Sentence"},{"id":"T157","span":{"begin":21615,"end":21738},"obj":"Sentence"},{"id":"T158","span":{"begin":21739,"end":21982},"obj":"Sentence"},{"id":"T159","span":{"begin":21983,"end":22151},"obj":"Sentence"},{"id":"T160","span":{"begin":22152,"end":22331},"obj":"Sentence"},{"id":"T161","span":{"begin":22332,"end":22564},"obj":"Sentence"},{"id":"T162","span":{"begin":22565,"end":22689},"obj":"Sentence"},{"id":"T163","span":{"begin":22690,"end":22793},"obj":"Sentence"},{"id":"T164","span":{"begin":22794,"end":22912},"obj":"Sentence"},{"id":"T165","span":{"begin":22913,"end":22953},"obj":"Sentence"},{"id":"T166","span":{"begin":22954,"end":23145},"obj":"Sentence"},{"id":"T167","span":{"begin":23146,"end":23354},"obj":"Sentence"}],"namespaces":[{"prefix":"_base","uri":"http://pubannotation.org/ontology/tao.owl#"}],"text":"Introduction\nA small cluster of cases of the disease now known as COVID-19 was first reported on December 29, 2019, in the Chinese city of Wuhan (World Health Organization, 2020a). By early May 2020, the disease had spread to all global regions, and overwhelmed some the world’s most developed health systems. More than 2.8 million cases and 260,000 deaths had been confirmed globally, and the vast majority of countries with confirmed cases were reporting escalating transmission (World Health Organization, 2020b).\nAs of 1 May 2020, there were 6808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. Encouragingly, the daily count of new confirmed cases had been declining since late March 2020, with 308 cases reported nationally since 14 April (Australian Government Department of Health, 2020a). This suggests that Australia has (to date) avoided a “worst-case” scenario — one where planning models estimated a peak daily demand for 35,000 ICU beds by around May 2020, far exceeding the health system’s capacity of around 2,200 ICU beds (Moss et al., 2020).\nThe first wave of COVID-19 epidemics, and the government and public responses to them, have varied vastly across the globe. For example, many European countries and the United States are in the midst of explosive outbreaks with overwhelmed health systems (Remuzzi and Remuzzi, 2020; The Lancet, 2020). Meanwhile, countries such as Singapore and South Korea had early success in containing the spread, partly attributed to their extensive surveillance efforts and case targeted interventions (Ng et al., 2020; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention, 2020). However, despite those early successes, Singapore has recently taken additional steps to further limit transmission in the face of increasing importations and community spread (Government of Singapore, 2020). Other locations in the region, including Taiwan, Hong Kong and New Zealand, have had similar epidemic experiences, achieving control through a combination of border, case targeted and social distancing measures.\nAnalysing key epidemiological and response factors — such as the intensity and timing of public health interventions — that contribute to individual country experiences of COVID-19 will assist in the next stage of response planning globally.\nHere we describe the course of the COVID-19 epidemic and public health response in Australia from 22 January up to mid-April 2020 (summarised in Figure 1). We then quantify the impact of the public health response on disease transmission (Figure 2) and forecast the short-term health system demand from COVID-19 patients (Figure 3).\nFigure 1. Time series of new daily confirmed cases of COVID-19 in Australia by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDates of selected key border and social distancing measures implemented by Australian authorities are indicated by annotations above the plotted case counts. These measures were in addition to case targeted interventions (case isolation and contact quarantine) and further border measures, including enhanced testing and provision of advice, on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note that Australian citizens and residents (and their dependants) were exempt from travel restrictions, but upon returning to Australia were required to quarantine for 14 days from the date of arrival. A full timeline of social distancing and border measures is provided in Figure 1—figure supplement 2.\nFigure 1—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in each Australian state/territory by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDetails on the epidemiological characteristics of locally and overseas acquired infections are available in the Australian Department of Health fortnightly epidemiological reports (Australian Government Department of Health, 2020e).\nFigure 1—figure supplement 2. Timeline of border and social distancing measures implemented in Australia up to 4 April 2020.\nThese measures were in addition to case targeted interventions, specifically case isolation and quarantine of their contacts. Contact tracing was initiated from 29 January 2020 and was performed by public health officials. Note 1: Between 1 February and 15 March, further border measures were introduced, including enhanced testing and provision of advice on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note 2: Australian citizens and residents (and their dependants) were exempt from travel restrictions but upon returning to Australia were required to quarantine for 14 days from the date of arrival. Note 3: School attendance is reported to have reduce substantially following government recommendations to keep children from school (National Centre for Immunisation Research and Surveillance, 2020), and in some cases, prior to these announcements (Carey, 2020). It should also be noted that school holidays in some states/territories overlapped with the restriction periods (late March and early April). Note 4: The use of face masks by the general public was not recommended at any time during the analysis period. Note 5: Personal hygiene measures and the ‘1.5 m distancing rule’ were promoted to the general public through television, print, radio and social media campaigns commissioned by national and state governments.\nFigure 2. Time-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020.\nConfidence in the estimated values is indicated by shading with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Not presented are the Australian Capital Territory (ACT), Northern Territory (NT) and Tasmania (TAS), as these states/territories had insufficient local transmission. The uncertainty in the R𝑒𝑓𝑓 estimates represent variability in a population-level average as a result of imperfect data, rather than individual-level heterogeneity in transmission (i.e., the variation in the number of secondary cases generated by each case).\nFigure 2—figure supplement 1. Sensitivity analysis 1 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 90%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 2. Sensitivity analysis 2 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 80%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 3. Sensitivity analysis 3 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed 50%, 20%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 3. Forecasted daily hospital ward (left) and intensive care unit (right) occupancy (dark ribbons = 50% confidence intervals; light ribbons = 95% confidence intervals) from 17 March to 28 April.\nOccupancy = the number of beds occupied by COVID-19 patients on a given day. Black dots indicate the reported ward and ICU occupancy available from the Australian national COVID-19 database at the time. These data were retrospectively updated where complete data were available (red crosses). Australian health system ward and ICU bed capacities are estimated to be over 25,000 and 1,100, respectively, under the assumption that 50% of total capacity could possibly be dedicated to COVID-19 patients (Australian Institute of Health and Welfare, 2019). The forecasted daily case counts are shown in Figure 3—figure supplement 1.\nFigure 3—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in Australia from 1 March to 13 April 2020 (grey bars) overlaid by daily case counts estimated from the forecasting model up to April 13 and projected forward from 14 to 28 April inclusive.\nInner shading = 50% confidence intervals. Outer shading = 95% confidence intervals. Note that forecasting model estimates prior to 13 April — the last recorded data point at the time of analysis (indicated by the dashed grey line) — use data up to and including the previous day. Black dots show the number of new daily cases of COVID-19 reported from 14 to 28 April.\n\nTimeline of the Australian epidemic\nAustralia took an early and precautionary approach to COVID-19. On 1 February, when China was the only country reporting uncontained transmission, Australian authorities restricted all travel from mainland China to Australia, in order to reduce the risk of importation of the virus. Only Australian citizens and residents (and their dependants) were permitted to travel from China to Australia. These individuals were advised to self-quarantine for 14 days from their date of arrival. Further border measures, including enhanced testing and provision of additional advice, were placed on arrivals from other countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020).\nThe day before Australia imposed these restrictions (January 31), 9720 cases of COVID-19 had been reported in mainland China (World Health Organization, 2020c). Australia had so far detected and managed nine imported cases, all with recent travel history from or a direct epidemiological link to Wuhan (Australian Government Department of Health, 2020b). Before the restrictions, Australia was expecting to receive approximately 200,000 air passengers from mainland China during February 2020 (Australian Bureau of Statistics, 2019). Travel numbers fell dramatically following the imposed travel restrictions.\nThese restrictions were not intended (and highly unlikely [Errett et al., 2020]) to prevent the ultimate importation of COVID-19 into Australia. Their purpose was to delay the establishment of an epidemic, buying valuable time for health authorities to plan and prepare.\nDuring the month of February, with extensive testing and case targeted interventions (case isolation and contact quarantine) initiated from 29 January (Australian Government Department of Health, 2020d), Australia detected and managed only 12 cases. Meanwhile, globally, the geographic extent of transmission and daily counts of confirmed cases and deaths continued to increase drastically (World Health Organization, 2020d). In early March, Australia extended travel restrictions to a number of countries with large uncontained outbreaks, namely Iran (as of 1 March) (Commonwealth Government of Australia, 2020a), South Korea (as of 5 March) (Commonwealth Government of Australia, 2020b) and Italy (as of 11 March) (Commonwealth Government of Australia, 2020c).\nDespite these measures, the daily case counts rose sharply in Australia during the first half of March. While the vast majority of these cases were connected to travellers returning to Australia from overseas, localised community transmission had been reported in areas of Sydney (NSW) and Melbourne (VIC) (Australian Government Department of Health, 2020c). Crude plots of the cumulative number of cases by country showed Australia on an early trajectory similar to the outbreaks experienced in China, Europe and the United States, where health systems had become or were becoming overwhelmed (Australian Government Department of Health, 2020f).\nFrom 16 March, the Australian Government progressively implemented a range of social distancing measures in order to reduce and prevent further community transmission (Commonwealth Government of Australia, 2020d). The day before, authorities had imposed a self-quarantine requirement on all international arrivals (Commonwealth Government of Australia, 2020e). On 19 March, Australia closed its borders to all non-citizens and non-residents (Commonwealth Government of Australia, 2020f), and on March 27, moved to a policy of mandatory quarantine for any returning citizens and residents (Commonwealth Government of Australia, 2020g). By 29 March, social distancing measures had been escalated to the extent that all Australians were strongly advised to leave their homes only for limited essential activities and public gatherings were limited to two people (Commonwealth Government of Australia, 2020h).\nBy late March, daily counts of new cases appeared to be declining, suggesting that these measures had successfully reduced transmission.\n\nQuantifying the impact of the response\nQuantifying changes in the rate of spread of infection over the course of an epidemic is critical for monitoring the collective impact of public health interventions and forecasting the short-term clinical burden. A key indicator of transmission in context is the effective reproduction number (R𝑒𝑓𝑓) — the average number of secondary infections caused by an infected individual in the presence of public health interventions and for which no assumption of 100% susceptibility is made. If control efforts are able to bring R𝑒𝑓𝑓 below 1, then on average there will be a decline in the number of new cases reported. The decline will become apparent after a delay of approximately one incubation period plus time to case detection and reporting following implementation of the control measure (i.e., at least two weeks).\nUsing case counts from the Australian national COVID-19 database, we estimated R𝑒𝑓𝑓 over time for each Australian state from 24 February to 5 April 2020 (Figure 2). We used a statistical method that estimates time-varying R𝑒𝑓𝑓 by using an optimally selected moving average window (according to the continuous ranked probability score) to smooth the curve and reduce the impact of localised clusters and outbreaks that may cause large fluctuations (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020). Importantly, the method accounts for time delays between illness onset and case notification. Incorporation of this lag is critical for accurate interpretation of the most recent data in the analysis, to be sure that an observed drop in the number of reported cases reflects an actual drop in case numbers.\nResults show that R𝑒𝑓𝑓 has likely been below one in each Australian state since early-to-mid March. These estimates are geographically averaged results over large areas and it is possible that R𝑒𝑓𝑓 was much higher than one in a number of localised settings (see Figure 2). The estimated time-varying R𝑒𝑓𝑓 value is based on cases that have been identified as a result of local transmission, whereas imported cases only contribute to the force of infection. Imported and locally acquired cases were assumed to be equally infectious. The method for estimating R𝑒𝑓𝑓 is sensitive to this assumption. Hence, we performed a sensitivity analysis to assess the impact of stepwise reductions in the infectiousness of imported cases on R𝑒𝑓𝑓 as a result of quarantine measures implemented over time (see Figure 2—figure supplement 1, Figure 2—figure supplement 2, and Figure 2—figure supplement 3). The sensitivity analyses suggest that R𝑒𝑓𝑓 may well have dropped below one later than shown in Figure 2.\nIn Victoria and New South Wales, the two Australian states with a substantial number of local cases, the effective reproduction number likely dropped from marginally above one to well below one within a two week period (considering both our main result and those from the sensitivity analyses) coinciding with the implementation of social distancing measures. A comparable trend was observed in New Zealand and many Western European countries, including France, Spain and Germany (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020), where similar national, stage-wise social distancing policies were enacted (Flaxman et al., 2020). However, most of these European countries experienced widespread community transmission prior to the implementation of social distancing measures, with R𝑒𝑓𝑓 estimates reaching between 1.5 and 2 in early March and declining over a longer period (three to four weeks) relative to Australia.\n\nForecasting the clinical burden\nNext we used our estimates of time-varying R𝑒𝑓𝑓 to forecast the short-term clinical burden in Australia. Estimates were input into a mathematical model of disease dynamics that was extended to account for imported cases. A sequential Monte Carlo method was used to infer the model parameters and appropriately capture the uncertainty (Moss et al., 2019a), conditional on each of a number of sampled R𝑒𝑓𝑓 trajectories up to 5 April, from which point they were assumed to be constant. The model was subsequently projected forward from April 14 to April 28, to forecast the number of reported cases, assuming a symptomatic detection probability of 80%.\nThe number of new daily hospitalisations and ICU admissions were estimated from recently observed and forecast case counts. Specifically, the age distribution of projected cases, and age-specific probabilities of hospitalisation and ICU admission, were extracted from Australian age-specific data on confirmed cases, assuming that this distribution would remain unchanged (see Table 1). In order to calculate the number of occupied ward/ICU beds per day, length-of-stay in a ward bed and ICU bed were assumed to be Gamma distributed with means (SD) of 11 (3.42) days and 14 (5.22) days, respectively. Our results indicated that with the public health interventions in place as of 13 April, Australia’s hospital ward and ICU occupancy would remain well below capacity thresholds over the period from 14 to 28 April.\nTable 1. Age-specific proportions of confirmed cases extracted from the Australian national COVID-19 database and age-specific estimates of the probability of hospitalisation and ICU admission for confirmed cases.\nAge Proportion of cases Pr(hospitalisation | confirmed case) Pr(ICU admission | confirmed case)\n0-9 0.0102 0.1475 0.0000\n10-18 0.0186 0.1081 0.0090\n19-29 0.2258 0.0504 0.0007\n30-39 0.1587 0.0865 0.0074\n40-49 0.1291 0.0947 0.0208\n50-59 0.1550 0.1112 0.0173\n60-69 0.1686 0.1529 0.0318\n70-79 0.1050 0.2440 0.0558\n80+ 0.0290 0.3815 0.0462\n\nConclusions\nOur analysis suggests that Australia’s combined strategy of early, targeted management of the risk of importation, case targeted interventions, and broad-scale social distancing measures applied prior to the onset of (detected) widespread community transmission has substantially mitigated the first wave of COVID-19. More detailed analyses are required to assess the relative impact of specific response measures, and this information will be crucial for the next phase of response planning. Other factors, such as temperature, humidity and population density may influence transmission of SARS-CoV-2 (Kissler et al., 2020). Whether these factors have played a role in the relative control of SARS-CoV-2 in some countries, remains an open question. Noting that epidemics are established in both the northern and southern hemispheres, it may be possible to gain insight into such factors over the next six months, via for example a comparative analysis of transmission in Australia and Europe.\nWe further anticipated that the Australian health care system was well positioned to manage the projected COVID-19 case loads over the forecast period (up to 28 April). Ongoing situational assessment and monitoring of forecast hospital and ICU demand will be essential for managing possible future relaxation of broad-scale community interventions. Vigilance for localised increases in epidemic activity and in particular for outbreaks in vulnerable populations such as residential aged care facilities, where a high proportion of cases are likely to be severe, must be maintained.\nOne largely unknown factor at present is the proportion of SARS-CoV-2 infections that are asymptomatic, mild or undiagnosed. Even if this number is high, the Australian population would still be largely susceptible to infection. Accordingly, complete relaxation of the measures currently in place would see a rapid resurgence in epidemic activity. This problem is not unique to Australia. Many countries with intensive social distancing measures in place are starting to grapple with their options and time frames for a gradual return to relative normalcy (Gottlieb et al., 2020).\nThere are difficult decisions ahead for governments, and for now Australia is one of the few countries fortunate enough to be able to plan the next steps from a position of relative calm as opposed to crisis."}
2_test
{"project":"2_test","denotations":[{"id":"32788039-32191691-27152622","span":{"begin":1597,"end":1601},"obj":"32191691"},{"id":"32788039-32257773-27152623","span":{"begin":1737,"end":1741},"obj":"32257773"},{"id":"32788039-32512579-27152624","span":{"begin":18602,"end":18606},"obj":"32512579"},{"id":"32788039-32291278-27152625","span":{"begin":21608,"end":21612},"obj":"32291278"}],"text":"Introduction\nA small cluster of cases of the disease now known as COVID-19 was first reported on December 29, 2019, in the Chinese city of Wuhan (World Health Organization, 2020a). By early May 2020, the disease had spread to all global regions, and overwhelmed some the world’s most developed health systems. More than 2.8 million cases and 260,000 deaths had been confirmed globally, and the vast majority of countries with confirmed cases were reporting escalating transmission (World Health Organization, 2020b).\nAs of 1 May 2020, there were 6808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. Encouragingly, the daily count of new confirmed cases had been declining since late March 2020, with 308 cases reported nationally since 14 April (Australian Government Department of Health, 2020a). This suggests that Australia has (to date) avoided a “worst-case” scenario — one where planning models estimated a peak daily demand for 35,000 ICU beds by around May 2020, far exceeding the health system’s capacity of around 2,200 ICU beds (Moss et al., 2020).\nThe first wave of COVID-19 epidemics, and the government and public responses to them, have varied vastly across the globe. For example, many European countries and the United States are in the midst of explosive outbreaks with overwhelmed health systems (Remuzzi and Remuzzi, 2020; The Lancet, 2020). Meanwhile, countries such as Singapore and South Korea had early success in containing the spread, partly attributed to their extensive surveillance efforts and case targeted interventions (Ng et al., 2020; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention, 2020). However, despite those early successes, Singapore has recently taken additional steps to further limit transmission in the face of increasing importations and community spread (Government of Singapore, 2020). Other locations in the region, including Taiwan, Hong Kong and New Zealand, have had similar epidemic experiences, achieving control through a combination of border, case targeted and social distancing measures.\nAnalysing key epidemiological and response factors — such as the intensity and timing of public health interventions — that contribute to individual country experiences of COVID-19 will assist in the next stage of response planning globally.\nHere we describe the course of the COVID-19 epidemic and public health response in Australia from 22 January up to mid-April 2020 (summarised in Figure 1). We then quantify the impact of the public health response on disease transmission (Figure 2) and forecast the short-term health system demand from COVID-19 patients (Figure 3).\nFigure 1. Time series of new daily confirmed cases of COVID-19 in Australia by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDates of selected key border and social distancing measures implemented by Australian authorities are indicated by annotations above the plotted case counts. These measures were in addition to case targeted interventions (case isolation and contact quarantine) and further border measures, including enhanced testing and provision of advice, on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note that Australian citizens and residents (and their dependants) were exempt from travel restrictions, but upon returning to Australia were required to quarantine for 14 days from the date of arrival. A full timeline of social distancing and border measures is provided in Figure 1—figure supplement 2.\nFigure 1—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in each Australian state/territory by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDetails on the epidemiological characteristics of locally and overseas acquired infections are available in the Australian Department of Health fortnightly epidemiological reports (Australian Government Department of Health, 2020e).\nFigure 1—figure supplement 2. Timeline of border and social distancing measures implemented in Australia up to 4 April 2020.\nThese measures were in addition to case targeted interventions, specifically case isolation and quarantine of their contacts. Contact tracing was initiated from 29 January 2020 and was performed by public health officials. Note 1: Between 1 February and 15 March, further border measures were introduced, including enhanced testing and provision of advice on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note 2: Australian citizens and residents (and their dependants) were exempt from travel restrictions but upon returning to Australia were required to quarantine for 14 days from the date of arrival. Note 3: School attendance is reported to have reduce substantially following government recommendations to keep children from school (National Centre for Immunisation Research and Surveillance, 2020), and in some cases, prior to these announcements (Carey, 2020). It should also be noted that school holidays in some states/territories overlapped with the restriction periods (late March and early April). Note 4: The use of face masks by the general public was not recommended at any time during the analysis period. Note 5: Personal hygiene measures and the ‘1.5 m distancing rule’ were promoted to the general public through television, print, radio and social media campaigns commissioned by national and state governments.\nFigure 2. Time-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020.\nConfidence in the estimated values is indicated by shading with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Not presented are the Australian Capital Territory (ACT), Northern Territory (NT) and Tasmania (TAS), as these states/territories had insufficient local transmission. The uncertainty in the R𝑒𝑓𝑓 estimates represent variability in a population-level average as a result of imperfect data, rather than individual-level heterogeneity in transmission (i.e., the variation in the number of secondary cases generated by each case).\nFigure 2—figure supplement 1. Sensitivity analysis 1 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 90%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 2. Sensitivity analysis 2 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 80%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 3. Sensitivity analysis 3 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed 50%, 20%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 3. Forecasted daily hospital ward (left) and intensive care unit (right) occupancy (dark ribbons = 50% confidence intervals; light ribbons = 95% confidence intervals) from 17 March to 28 April.\nOccupancy = the number of beds occupied by COVID-19 patients on a given day. Black dots indicate the reported ward and ICU occupancy available from the Australian national COVID-19 database at the time. These data were retrospectively updated where complete data were available (red crosses). Australian health system ward and ICU bed capacities are estimated to be over 25,000 and 1,100, respectively, under the assumption that 50% of total capacity could possibly be dedicated to COVID-19 patients (Australian Institute of Health and Welfare, 2019). The forecasted daily case counts are shown in Figure 3—figure supplement 1.\nFigure 3—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in Australia from 1 March to 13 April 2020 (grey bars) overlaid by daily case counts estimated from the forecasting model up to April 13 and projected forward from 14 to 28 April inclusive.\nInner shading = 50% confidence intervals. Outer shading = 95% confidence intervals. Note that forecasting model estimates prior to 13 April — the last recorded data point at the time of analysis (indicated by the dashed grey line) — use data up to and including the previous day. Black dots show the number of new daily cases of COVID-19 reported from 14 to 28 April.\n\nTimeline of the Australian epidemic\nAustralia took an early and precautionary approach to COVID-19. On 1 February, when China was the only country reporting uncontained transmission, Australian authorities restricted all travel from mainland China to Australia, in order to reduce the risk of importation of the virus. Only Australian citizens and residents (and their dependants) were permitted to travel from China to Australia. These individuals were advised to self-quarantine for 14 days from their date of arrival. Further border measures, including enhanced testing and provision of additional advice, were placed on arrivals from other countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020).\nThe day before Australia imposed these restrictions (January 31), 9720 cases of COVID-19 had been reported in mainland China (World Health Organization, 2020c). Australia had so far detected and managed nine imported cases, all with recent travel history from or a direct epidemiological link to Wuhan (Australian Government Department of Health, 2020b). Before the restrictions, Australia was expecting to receive approximately 200,000 air passengers from mainland China during February 2020 (Australian Bureau of Statistics, 2019). Travel numbers fell dramatically following the imposed travel restrictions.\nThese restrictions were not intended (and highly unlikely [Errett et al., 2020]) to prevent the ultimate importation of COVID-19 into Australia. Their purpose was to delay the establishment of an epidemic, buying valuable time for health authorities to plan and prepare.\nDuring the month of February, with extensive testing and case targeted interventions (case isolation and contact quarantine) initiated from 29 January (Australian Government Department of Health, 2020d), Australia detected and managed only 12 cases. Meanwhile, globally, the geographic extent of transmission and daily counts of confirmed cases and deaths continued to increase drastically (World Health Organization, 2020d). In early March, Australia extended travel restrictions to a number of countries with large uncontained outbreaks, namely Iran (as of 1 March) (Commonwealth Government of Australia, 2020a), South Korea (as of 5 March) (Commonwealth Government of Australia, 2020b) and Italy (as of 11 March) (Commonwealth Government of Australia, 2020c).\nDespite these measures, the daily case counts rose sharply in Australia during the first half of March. While the vast majority of these cases were connected to travellers returning to Australia from overseas, localised community transmission had been reported in areas of Sydney (NSW) and Melbourne (VIC) (Australian Government Department of Health, 2020c). Crude plots of the cumulative number of cases by country showed Australia on an early trajectory similar to the outbreaks experienced in China, Europe and the United States, where health systems had become or were becoming overwhelmed (Australian Government Department of Health, 2020f).\nFrom 16 March, the Australian Government progressively implemented a range of social distancing measures in order to reduce and prevent further community transmission (Commonwealth Government of Australia, 2020d). The day before, authorities had imposed a self-quarantine requirement on all international arrivals (Commonwealth Government of Australia, 2020e). On 19 March, Australia closed its borders to all non-citizens and non-residents (Commonwealth Government of Australia, 2020f), and on March 27, moved to a policy of mandatory quarantine for any returning citizens and residents (Commonwealth Government of Australia, 2020g). By 29 March, social distancing measures had been escalated to the extent that all Australians were strongly advised to leave their homes only for limited essential activities and public gatherings were limited to two people (Commonwealth Government of Australia, 2020h).\nBy late March, daily counts of new cases appeared to be declining, suggesting that these measures had successfully reduced transmission.\n\nQuantifying the impact of the response\nQuantifying changes in the rate of spread of infection over the course of an epidemic is critical for monitoring the collective impact of public health interventions and forecasting the short-term clinical burden. A key indicator of transmission in context is the effective reproduction number (R𝑒𝑓𝑓) — the average number of secondary infections caused by an infected individual in the presence of public health interventions and for which no assumption of 100% susceptibility is made. If control efforts are able to bring R𝑒𝑓𝑓 below 1, then on average there will be a decline in the number of new cases reported. The decline will become apparent after a delay of approximately one incubation period plus time to case detection and reporting following implementation of the control measure (i.e., at least two weeks).\nUsing case counts from the Australian national COVID-19 database, we estimated R𝑒𝑓𝑓 over time for each Australian state from 24 February to 5 April 2020 (Figure 2). We used a statistical method that estimates time-varying R𝑒𝑓𝑓 by using an optimally selected moving average window (according to the continuous ranked probability score) to smooth the curve and reduce the impact of localised clusters and outbreaks that may cause large fluctuations (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020). Importantly, the method accounts for time delays between illness onset and case notification. Incorporation of this lag is critical for accurate interpretation of the most recent data in the analysis, to be sure that an observed drop in the number of reported cases reflects an actual drop in case numbers.\nResults show that R𝑒𝑓𝑓 has likely been below one in each Australian state since early-to-mid March. These estimates are geographically averaged results over large areas and it is possible that R𝑒𝑓𝑓 was much higher than one in a number of localised settings (see Figure 2). The estimated time-varying R𝑒𝑓𝑓 value is based on cases that have been identified as a result of local transmission, whereas imported cases only contribute to the force of infection. Imported and locally acquired cases were assumed to be equally infectious. The method for estimating R𝑒𝑓𝑓 is sensitive to this assumption. Hence, we performed a sensitivity analysis to assess the impact of stepwise reductions in the infectiousness of imported cases on R𝑒𝑓𝑓 as a result of quarantine measures implemented over time (see Figure 2—figure supplement 1, Figure 2—figure supplement 2, and Figure 2—figure supplement 3). The sensitivity analyses suggest that R𝑒𝑓𝑓 may well have dropped below one later than shown in Figure 2.\nIn Victoria and New South Wales, the two Australian states with a substantial number of local cases, the effective reproduction number likely dropped from marginally above one to well below one within a two week period (considering both our main result and those from the sensitivity analyses) coinciding with the implementation of social distancing measures. A comparable trend was observed in New Zealand and many Western European countries, including France, Spain and Germany (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020), where similar national, stage-wise social distancing policies were enacted (Flaxman et al., 2020). However, most of these European countries experienced widespread community transmission prior to the implementation of social distancing measures, with R𝑒𝑓𝑓 estimates reaching between 1.5 and 2 in early March and declining over a longer period (three to four weeks) relative to Australia.\n\nForecasting the clinical burden\nNext we used our estimates of time-varying R𝑒𝑓𝑓 to forecast the short-term clinical burden in Australia. Estimates were input into a mathematical model of disease dynamics that was extended to account for imported cases. A sequential Monte Carlo method was used to infer the model parameters and appropriately capture the uncertainty (Moss et al., 2019a), conditional on each of a number of sampled R𝑒𝑓𝑓 trajectories up to 5 April, from which point they were assumed to be constant. The model was subsequently projected forward from April 14 to April 28, to forecast the number of reported cases, assuming a symptomatic detection probability of 80%.\nThe number of new daily hospitalisations and ICU admissions were estimated from recently observed and forecast case counts. Specifically, the age distribution of projected cases, and age-specific probabilities of hospitalisation and ICU admission, were extracted from Australian age-specific data on confirmed cases, assuming that this distribution would remain unchanged (see Table 1). In order to calculate the number of occupied ward/ICU beds per day, length-of-stay in a ward bed and ICU bed were assumed to be Gamma distributed with means (SD) of 11 (3.42) days and 14 (5.22) days, respectively. Our results indicated that with the public health interventions in place as of 13 April, Australia’s hospital ward and ICU occupancy would remain well below capacity thresholds over the period from 14 to 28 April.\nTable 1. Age-specific proportions of confirmed cases extracted from the Australian national COVID-19 database and age-specific estimates of the probability of hospitalisation and ICU admission for confirmed cases.\nAge Proportion of cases Pr(hospitalisation | confirmed case) Pr(ICU admission | confirmed case)\n0-9 0.0102 0.1475 0.0000\n10-18 0.0186 0.1081 0.0090\n19-29 0.2258 0.0504 0.0007\n30-39 0.1587 0.0865 0.0074\n40-49 0.1291 0.0947 0.0208\n50-59 0.1550 0.1112 0.0173\n60-69 0.1686 0.1529 0.0318\n70-79 0.1050 0.2440 0.0558\n80+ 0.0290 0.3815 0.0462\n\nConclusions\nOur analysis suggests that Australia’s combined strategy of early, targeted management of the risk of importation, case targeted interventions, and broad-scale social distancing measures applied prior to the onset of (detected) widespread community transmission has substantially mitigated the first wave of COVID-19. More detailed analyses are required to assess the relative impact of specific response measures, and this information will be crucial for the next phase of response planning. Other factors, such as temperature, humidity and population density may influence transmission of SARS-CoV-2 (Kissler et al., 2020). Whether these factors have played a role in the relative control of SARS-CoV-2 in some countries, remains an open question. Noting that epidemics are established in both the northern and southern hemispheres, it may be possible to gain insight into such factors over the next six months, via for example a comparative analysis of transmission in Australia and Europe.\nWe further anticipated that the Australian health care system was well positioned to manage the projected COVID-19 case loads over the forecast period (up to 28 April). Ongoing situational assessment and monitoring of forecast hospital and ICU demand will be essential for managing possible future relaxation of broad-scale community interventions. Vigilance for localised increases in epidemic activity and in particular for outbreaks in vulnerable populations such as residential aged care facilities, where a high proportion of cases are likely to be severe, must be maintained.\nOne largely unknown factor at present is the proportion of SARS-CoV-2 infections that are asymptomatic, mild or undiagnosed. Even if this number is high, the Australian population would still be largely susceptible to infection. Accordingly, complete relaxation of the measures currently in place would see a rapid resurgence in epidemic activity. This problem is not unique to Australia. Many countries with intensive social distancing measures in place are starting to grapple with their options and time frames for a gradual return to relative normalcy (Gottlieb et al., 2020).\nThere are difficult decisions ahead for governments, and for now Australia is one of the few countries fortunate enough to be able to plan the next steps from a position of relative calm as opposed to crisis."}
LitCovid-PMC-OGER-BB
{"project":"LitCovid-PMC-OGER-BB","denotations":[{"id":"T7","span":{"begin":66,"end":74},"obj":"SP_7"},{"id":"T8","span":{"begin":294,"end":308},"obj":"UBERON:0000467"},{"id":"T9","span":{"begin":350,"end":356},"obj":"GO:0016265"},{"id":"T10","span":{"begin":570,"end":578},"obj":"SP_7"},{"id":"T11","span":{"begin":610,"end":614},"obj":"GO:0016265"},{"id":"T12","span":{"begin":1023,"end":1036},"obj":"UBERON:0000467"},{"id":"T13","span":{"begin":1112,"end":1120},"obj":"SP_7"},{"id":"T14","span":{"begin":1211,"end":1216},"obj":"UBERON:0010230"},{"id":"T15","span":{"begin":1334,"end":1348},"obj":"UBERON:0000467"},{"id":"T16","span":{"begin":1603,"end":1611},"obj":"SP_7"},{"id":"T17","span":{"begin":2078,"end":2085},"obj":"GO:0065007"},{"id":"T18","span":{"begin":2337,"end":2345},"obj":"SP_7"},{"id":"T19","span":{"begin":2442,"end":2450},"obj":"SP_7"},{"id":"T20","span":{"begin":2710,"end":2718},"obj":"SP_7"},{"id":"T21","span":{"begin":2795,"end":2803},"obj":"SP_7"},{"id":"T22","span":{"begin":3822,"end":3830},"obj":"SP_7"},{"id":"T23","span":{"begin":10547,"end":10555},"obj":"SP_7"}],"text":"Introduction\nA small cluster of cases of the disease now known as COVID-19 was first reported on December 29, 2019, in the Chinese city of Wuhan (World Health Organization, 2020a). By early May 2020, the disease had spread to all global regions, and overwhelmed some the world’s most developed health systems. More than 2.8 million cases and 260,000 deaths had been confirmed globally, and the vast majority of countries with confirmed cases were reporting escalating transmission (World Health Organization, 2020b).\nAs of 1 May 2020, there were 6808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. Encouragingly, the daily count of new confirmed cases had been declining since late March 2020, with 308 cases reported nationally since 14 April (Australian Government Department of Health, 2020a). This suggests that Australia has (to date) avoided a “worst-case” scenario — one where planning models estimated a peak daily demand for 35,000 ICU beds by around May 2020, far exceeding the health system’s capacity of around 2,200 ICU beds (Moss et al., 2020).\nThe first wave of COVID-19 epidemics, and the government and public responses to them, have varied vastly across the globe. For example, many European countries and the United States are in the midst of explosive outbreaks with overwhelmed health systems (Remuzzi and Remuzzi, 2020; The Lancet, 2020). Meanwhile, countries such as Singapore and South Korea had early success in containing the spread, partly attributed to their extensive surveillance efforts and case targeted interventions (Ng et al., 2020; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention, 2020). However, despite those early successes, Singapore has recently taken additional steps to further limit transmission in the face of increasing importations and community spread (Government of Singapore, 2020). Other locations in the region, including Taiwan, Hong Kong and New Zealand, have had similar epidemic experiences, achieving control through a combination of border, case targeted and social distancing measures.\nAnalysing key epidemiological and response factors — such as the intensity and timing of public health interventions — that contribute to individual country experiences of COVID-19 will assist in the next stage of response planning globally.\nHere we describe the course of the COVID-19 epidemic and public health response in Australia from 22 January up to mid-April 2020 (summarised in Figure 1). We then quantify the impact of the public health response on disease transmission (Figure 2) and forecast the short-term health system demand from COVID-19 patients (Figure 3).\nFigure 1. Time series of new daily confirmed cases of COVID-19 in Australia by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDates of selected key border and social distancing measures implemented by Australian authorities are indicated by annotations above the plotted case counts. These measures were in addition to case targeted interventions (case isolation and contact quarantine) and further border measures, including enhanced testing and provision of advice, on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note that Australian citizens and residents (and their dependants) were exempt from travel restrictions, but upon returning to Australia were required to quarantine for 14 days from the date of arrival. A full timeline of social distancing and border measures is provided in Figure 1—figure supplement 2.\nFigure 1—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in each Australian state/territory by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDetails on the epidemiological characteristics of locally and overseas acquired infections are available in the Australian Department of Health fortnightly epidemiological reports (Australian Government Department of Health, 2020e).\nFigure 1—figure supplement 2. Timeline of border and social distancing measures implemented in Australia up to 4 April 2020.\nThese measures were in addition to case targeted interventions, specifically case isolation and quarantine of their contacts. Contact tracing was initiated from 29 January 2020 and was performed by public health officials. Note 1: Between 1 February and 15 March, further border measures were introduced, including enhanced testing and provision of advice on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note 2: Australian citizens and residents (and their dependants) were exempt from travel restrictions but upon returning to Australia were required to quarantine for 14 days from the date of arrival. Note 3: School attendance is reported to have reduce substantially following government recommendations to keep children from school (National Centre for Immunisation Research and Surveillance, 2020), and in some cases, prior to these announcements (Carey, 2020). It should also be noted that school holidays in some states/territories overlapped with the restriction periods (late March and early April). Note 4: The use of face masks by the general public was not recommended at any time during the analysis period. Note 5: Personal hygiene measures and the ‘1.5 m distancing rule’ were promoted to the general public through television, print, radio and social media campaigns commissioned by national and state governments.\nFigure 2. Time-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020.\nConfidence in the estimated values is indicated by shading with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Not presented are the Australian Capital Territory (ACT), Northern Territory (NT) and Tasmania (TAS), as these states/territories had insufficient local transmission. The uncertainty in the R𝑒𝑓𝑓 estimates represent variability in a population-level average as a result of imperfect data, rather than individual-level heterogeneity in transmission (i.e., the variation in the number of secondary cases generated by each case).\nFigure 2—figure supplement 1. Sensitivity analysis 1 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 90%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 2. Sensitivity analysis 2 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 80%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 3. Sensitivity analysis 3 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed 50%, 20%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 3. Forecasted daily hospital ward (left) and intensive care unit (right) occupancy (dark ribbons = 50% confidence intervals; light ribbons = 95% confidence intervals) from 17 March to 28 April.\nOccupancy = the number of beds occupied by COVID-19 patients on a given day. Black dots indicate the reported ward and ICU occupancy available from the Australian national COVID-19 database at the time. These data were retrospectively updated where complete data were available (red crosses). Australian health system ward and ICU bed capacities are estimated to be over 25,000 and 1,100, respectively, under the assumption that 50% of total capacity could possibly be dedicated to COVID-19 patients (Australian Institute of Health and Welfare, 2019). The forecasted daily case counts are shown in Figure 3—figure supplement 1.\nFigure 3—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in Australia from 1 March to 13 April 2020 (grey bars) overlaid by daily case counts estimated from the forecasting model up to April 13 and projected forward from 14 to 28 April inclusive.\nInner shading = 50% confidence intervals. Outer shading = 95% confidence intervals. Note that forecasting model estimates prior to 13 April — the last recorded data point at the time of analysis (indicated by the dashed grey line) — use data up to and including the previous day. Black dots show the number of new daily cases of COVID-19 reported from 14 to 28 April.\n\nTimeline of the Australian epidemic\nAustralia took an early and precautionary approach to COVID-19. On 1 February, when China was the only country reporting uncontained transmission, Australian authorities restricted all travel from mainland China to Australia, in order to reduce the risk of importation of the virus. Only Australian citizens and residents (and their dependants) were permitted to travel from China to Australia. These individuals were advised to self-quarantine for 14 days from their date of arrival. Further border measures, including enhanced testing and provision of additional advice, were placed on arrivals from other countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020).\nThe day before Australia imposed these restrictions (January 31), 9720 cases of COVID-19 had been reported in mainland China (World Health Organization, 2020c). Australia had so far detected and managed nine imported cases, all with recent travel history from or a direct epidemiological link to Wuhan (Australian Government Department of Health, 2020b). Before the restrictions, Australia was expecting to receive approximately 200,000 air passengers from mainland China during February 2020 (Australian Bureau of Statistics, 2019). Travel numbers fell dramatically following the imposed travel restrictions.\nThese restrictions were not intended (and highly unlikely [Errett et al., 2020]) to prevent the ultimate importation of COVID-19 into Australia. Their purpose was to delay the establishment of an epidemic, buying valuable time for health authorities to plan and prepare.\nDuring the month of February, with extensive testing and case targeted interventions (case isolation and contact quarantine) initiated from 29 January (Australian Government Department of Health, 2020d), Australia detected and managed only 12 cases. Meanwhile, globally, the geographic extent of transmission and daily counts of confirmed cases and deaths continued to increase drastically (World Health Organization, 2020d). In early March, Australia extended travel restrictions to a number of countries with large uncontained outbreaks, namely Iran (as of 1 March) (Commonwealth Government of Australia, 2020a), South Korea (as of 5 March) (Commonwealth Government of Australia, 2020b) and Italy (as of 11 March) (Commonwealth Government of Australia, 2020c).\nDespite these measures, the daily case counts rose sharply in Australia during the first half of March. While the vast majority of these cases were connected to travellers returning to Australia from overseas, localised community transmission had been reported in areas of Sydney (NSW) and Melbourne (VIC) (Australian Government Department of Health, 2020c). Crude plots of the cumulative number of cases by country showed Australia on an early trajectory similar to the outbreaks experienced in China, Europe and the United States, where health systems had become or were becoming overwhelmed (Australian Government Department of Health, 2020f).\nFrom 16 March, the Australian Government progressively implemented a range of social distancing measures in order to reduce and prevent further community transmission (Commonwealth Government of Australia, 2020d). The day before, authorities had imposed a self-quarantine requirement on all international arrivals (Commonwealth Government of Australia, 2020e). On 19 March, Australia closed its borders to all non-citizens and non-residents (Commonwealth Government of Australia, 2020f), and on March 27, moved to a policy of mandatory quarantine for any returning citizens and residents (Commonwealth Government of Australia, 2020g). By 29 March, social distancing measures had been escalated to the extent that all Australians were strongly advised to leave their homes only for limited essential activities and public gatherings were limited to two people (Commonwealth Government of Australia, 2020h).\nBy late March, daily counts of new cases appeared to be declining, suggesting that these measures had successfully reduced transmission.\n\nQuantifying the impact of the response\nQuantifying changes in the rate of spread of infection over the course of an epidemic is critical for monitoring the collective impact of public health interventions and forecasting the short-term clinical burden. A key indicator of transmission in context is the effective reproduction number (R𝑒𝑓𝑓) — the average number of secondary infections caused by an infected individual in the presence of public health interventions and for which no assumption of 100% susceptibility is made. If control efforts are able to bring R𝑒𝑓𝑓 below 1, then on average there will be a decline in the number of new cases reported. The decline will become apparent after a delay of approximately one incubation period plus time to case detection and reporting following implementation of the control measure (i.e., at least two weeks).\nUsing case counts from the Australian national COVID-19 database, we estimated R𝑒𝑓𝑓 over time for each Australian state from 24 February to 5 April 2020 (Figure 2). We used a statistical method that estimates time-varying R𝑒𝑓𝑓 by using an optimally selected moving average window (according to the continuous ranked probability score) to smooth the curve and reduce the impact of localised clusters and outbreaks that may cause large fluctuations (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020). Importantly, the method accounts for time delays between illness onset and case notification. Incorporation of this lag is critical for accurate interpretation of the most recent data in the analysis, to be sure that an observed drop in the number of reported cases reflects an actual drop in case numbers.\nResults show that R𝑒𝑓𝑓 has likely been below one in each Australian state since early-to-mid March. These estimates are geographically averaged results over large areas and it is possible that R𝑒𝑓𝑓 was much higher than one in a number of localised settings (see Figure 2). The estimated time-varying R𝑒𝑓𝑓 value is based on cases that have been identified as a result of local transmission, whereas imported cases only contribute to the force of infection. Imported and locally acquired cases were assumed to be equally infectious. The method for estimating R𝑒𝑓𝑓 is sensitive to this assumption. Hence, we performed a sensitivity analysis to assess the impact of stepwise reductions in the infectiousness of imported cases on R𝑒𝑓𝑓 as a result of quarantine measures implemented over time (see Figure 2—figure supplement 1, Figure 2—figure supplement 2, and Figure 2—figure supplement 3). The sensitivity analyses suggest that R𝑒𝑓𝑓 may well have dropped below one later than shown in Figure 2.\nIn Victoria and New South Wales, the two Australian states with a substantial number of local cases, the effective reproduction number likely dropped from marginally above one to well below one within a two week period (considering both our main result and those from the sensitivity analyses) coinciding with the implementation of social distancing measures. A comparable trend was observed in New Zealand and many Western European countries, including France, Spain and Germany (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020), where similar national, stage-wise social distancing policies were enacted (Flaxman et al., 2020). However, most of these European countries experienced widespread community transmission prior to the implementation of social distancing measures, with R𝑒𝑓𝑓 estimates reaching between 1.5 and 2 in early March and declining over a longer period (three to four weeks) relative to Australia.\n\nForecasting the clinical burden\nNext we used our estimates of time-varying R𝑒𝑓𝑓 to forecast the short-term clinical burden in Australia. Estimates were input into a mathematical model of disease dynamics that was extended to account for imported cases. A sequential Monte Carlo method was used to infer the model parameters and appropriately capture the uncertainty (Moss et al., 2019a), conditional on each of a number of sampled R𝑒𝑓𝑓 trajectories up to 5 April, from which point they were assumed to be constant. The model was subsequently projected forward from April 14 to April 28, to forecast the number of reported cases, assuming a symptomatic detection probability of 80%.\nThe number of new daily hospitalisations and ICU admissions were estimated from recently observed and forecast case counts. Specifically, the age distribution of projected cases, and age-specific probabilities of hospitalisation and ICU admission, were extracted from Australian age-specific data on confirmed cases, assuming that this distribution would remain unchanged (see Table 1). In order to calculate the number of occupied ward/ICU beds per day, length-of-stay in a ward bed and ICU bed were assumed to be Gamma distributed with means (SD) of 11 (3.42) days and 14 (5.22) days, respectively. Our results indicated that with the public health interventions in place as of 13 April, Australia’s hospital ward and ICU occupancy would remain well below capacity thresholds over the period from 14 to 28 April.\nTable 1. Age-specific proportions of confirmed cases extracted from the Australian national COVID-19 database and age-specific estimates of the probability of hospitalisation and ICU admission for confirmed cases.\nAge Proportion of cases Pr(hospitalisation | confirmed case) Pr(ICU admission | confirmed case)\n0-9 0.0102 0.1475 0.0000\n10-18 0.0186 0.1081 0.0090\n19-29 0.2258 0.0504 0.0007\n30-39 0.1587 0.0865 0.0074\n40-49 0.1291 0.0947 0.0208\n50-59 0.1550 0.1112 0.0173\n60-69 0.1686 0.1529 0.0318\n70-79 0.1050 0.2440 0.0558\n80+ 0.0290 0.3815 0.0462\n\nConclusions\nOur analysis suggests that Australia’s combined strategy of early, targeted management of the risk of importation, case targeted interventions, and broad-scale social distancing measures applied prior to the onset of (detected) widespread community transmission has substantially mitigated the first wave of COVID-19. More detailed analyses are required to assess the relative impact of specific response measures, and this information will be crucial for the next phase of response planning. Other factors, such as temperature, humidity and population density may influence transmission of SARS-CoV-2 (Kissler et al., 2020). Whether these factors have played a role in the relative control of SARS-CoV-2 in some countries, remains an open question. Noting that epidemics are established in both the northern and southern hemispheres, it may be possible to gain insight into such factors over the next six months, via for example a comparative analysis of transmission in Australia and Europe.\nWe further anticipated that the Australian health care system was well positioned to manage the projected COVID-19 case loads over the forecast period (up to 28 April). Ongoing situational assessment and monitoring of forecast hospital and ICU demand will be essential for managing possible future relaxation of broad-scale community interventions. Vigilance for localised increases in epidemic activity and in particular for outbreaks in vulnerable populations such as residential aged care facilities, where a high proportion of cases are likely to be severe, must be maintained.\nOne largely unknown factor at present is the proportion of SARS-CoV-2 infections that are asymptomatic, mild or undiagnosed. Even if this number is high, the Australian population would still be largely susceptible to infection. Accordingly, complete relaxation of the measures currently in place would see a rapid resurgence in epidemic activity. This problem is not unique to Australia. Many countries with intensive social distancing measures in place are starting to grapple with their options and time frames for a gradual return to relative normalcy (Gottlieb et al., 2020).\nThere are difficult decisions ahead for governments, and for now Australia is one of the few countries fortunate enough to be able to plan the next steps from a position of relative calm as opposed to crisis."}
MyTest
{"project":"MyTest","denotations":[{"id":"32788039-32191691-27152622","span":{"begin":1597,"end":1601},"obj":"32191691"},{"id":"32788039-32257773-27152623","span":{"begin":1737,"end":1741},"obj":"32257773"},{"id":"32788039-32512579-27152624","span":{"begin":18602,"end":18606},"obj":"32512579"},{"id":"32788039-32291278-27152625","span":{"begin":21608,"end":21612},"obj":"32291278"}],"namespaces":[{"prefix":"_base","uri":"https://www.uniprot.org/uniprot/testbase"},{"prefix":"UniProtKB","uri":"https://www.uniprot.org/uniprot/"},{"prefix":"uniprot","uri":"https://www.uniprot.org/uniprotkb/"}],"text":"Introduction\nA small cluster of cases of the disease now known as COVID-19 was first reported on December 29, 2019, in the Chinese city of Wuhan (World Health Organization, 2020a). By early May 2020, the disease had spread to all global regions, and overwhelmed some the world’s most developed health systems. More than 2.8 million cases and 260,000 deaths had been confirmed globally, and the vast majority of countries with confirmed cases were reporting escalating transmission (World Health Organization, 2020b).\nAs of 1 May 2020, there were 6808 confirmed cases of COVID-19 in Australia. Of these, 98 had died from the disease. Encouragingly, the daily count of new confirmed cases had been declining since late March 2020, with 308 cases reported nationally since 14 April (Australian Government Department of Health, 2020a). This suggests that Australia has (to date) avoided a “worst-case” scenario — one where planning models estimated a peak daily demand for 35,000 ICU beds by around May 2020, far exceeding the health system’s capacity of around 2,200 ICU beds (Moss et al., 2020).\nThe first wave of COVID-19 epidemics, and the government and public responses to them, have varied vastly across the globe. For example, many European countries and the United States are in the midst of explosive outbreaks with overwhelmed health systems (Remuzzi and Remuzzi, 2020; The Lancet, 2020). Meanwhile, countries such as Singapore and South Korea had early success in containing the spread, partly attributed to their extensive surveillance efforts and case targeted interventions (Ng et al., 2020; COVID-19 National Emergency Response Center, Epidemiology and Case Management Team, Korea Centers for Disease Control and Prevention, 2020). However, despite those early successes, Singapore has recently taken additional steps to further limit transmission in the face of increasing importations and community spread (Government of Singapore, 2020). Other locations in the region, including Taiwan, Hong Kong and New Zealand, have had similar epidemic experiences, achieving control through a combination of border, case targeted and social distancing measures.\nAnalysing key epidemiological and response factors — such as the intensity and timing of public health interventions — that contribute to individual country experiences of COVID-19 will assist in the next stage of response planning globally.\nHere we describe the course of the COVID-19 epidemic and public health response in Australia from 22 January up to mid-April 2020 (summarised in Figure 1). We then quantify the impact of the public health response on disease transmission (Figure 2) and forecast the short-term health system demand from COVID-19 patients (Figure 3).\nFigure 1. Time series of new daily confirmed cases of COVID-19 in Australia by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDates of selected key border and social distancing measures implemented by Australian authorities are indicated by annotations above the plotted case counts. These measures were in addition to case targeted interventions (case isolation and contact quarantine) and further border measures, including enhanced testing and provision of advice, on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note that Australian citizens and residents (and their dependants) were exempt from travel restrictions, but upon returning to Australia were required to quarantine for 14 days from the date of arrival. A full timeline of social distancing and border measures is provided in Figure 1—figure supplement 2.\nFigure 1—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in each Australian state/territory by import status (purple = overseas acquired, blue = locally acquired, green = unknown origin) from 22 January 2020 (first case detected) to 13 April 2020.\nDetails on the epidemiological characteristics of locally and overseas acquired infections are available in the Australian Department of Health fortnightly epidemiological reports (Australian Government Department of Health, 2020e).\nFigure 1—figure supplement 2. Timeline of border and social distancing measures implemented in Australia up to 4 April 2020.\nThese measures were in addition to case targeted interventions, specifically case isolation and quarantine of their contacts. Contact tracing was initiated from 29 January 2020 and was performed by public health officials. Note 1: Between 1 February and 15 March, further border measures were introduced, including enhanced testing and provision of advice on arrivals from other selected countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020). Note 2: Australian citizens and residents (and their dependants) were exempt from travel restrictions but upon returning to Australia were required to quarantine for 14 days from the date of arrival. Note 3: School attendance is reported to have reduce substantially following government recommendations to keep children from school (National Centre for Immunisation Research and Surveillance, 2020), and in some cases, prior to these announcements (Carey, 2020). It should also be noted that school holidays in some states/territories overlapped with the restriction periods (late March and early April). Note 4: The use of face masks by the general public was not recommended at any time during the analysis period. Note 5: Personal hygiene measures and the ‘1.5 m distancing rule’ were promoted to the general public through television, print, radio and social media campaigns commissioned by national and state governments.\nFigure 2. Time-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020.\nConfidence in the estimated values is indicated by shading with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Not presented are the Australian Capital Territory (ACT), Northern Territory (NT) and Tasmania (TAS), as these states/territories had insufficient local transmission. The uncertainty in the R𝑒𝑓𝑓 estimates represent variability in a population-level average as a result of imperfect data, rather than individual-level heterogeneity in transmission (i.e., the variation in the number of secondary cases generated by each case).\nFigure 2—figure supplement 1. Sensitivity analysis 1 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 90%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 2. Sensitivity analysis 2 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed that 80%, 50%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 2—figure supplement 3. Sensitivity analysis 3 of 3.\nTime-varying estimate of the effective reproduction number (R𝑒𝑓𝑓) of COVID-19 by Australian state (light blue ribbon = 90% credible interval; dark blue ribbon = 50% credible interval) from 1 March to 5 April 2020, based on data up to and including 13 April 2020. Confidence in the estimated values is indicated by shading, with reduced shading corresponding to reduced confidence. The horizontal dashed line indicates the target value of 1 for the effective reproduction number required for control. Results are produced assuming stepwise changes in the relative infectiousness of locally acquired to imported cases according to quarantine requirements for returning travellers introduced on 15 and 27 March (indicated by vertical grey lines). We assumed 50%, 20%, and 1% of imported cases contributed to transmission prior to 15 March, between 15 and 27 March (inclusive), and after 27 March, respectively.\nFigure 3. Forecasted daily hospital ward (left) and intensive care unit (right) occupancy (dark ribbons = 50% confidence intervals; light ribbons = 95% confidence intervals) from 17 March to 28 April.\nOccupancy = the number of beds occupied by COVID-19 patients on a given day. Black dots indicate the reported ward and ICU occupancy available from the Australian national COVID-19 database at the time. These data were retrospectively updated where complete data were available (red crosses). Australian health system ward and ICU bed capacities are estimated to be over 25,000 and 1,100, respectively, under the assumption that 50% of total capacity could possibly be dedicated to COVID-19 patients (Australian Institute of Health and Welfare, 2019). The forecasted daily case counts are shown in Figure 3—figure supplement 1.\nFigure 3—figure supplement 1. Time series of new daily confirmed cases of COVID-19 in Australia from 1 March to 13 April 2020 (grey bars) overlaid by daily case counts estimated from the forecasting model up to April 13 and projected forward from 14 to 28 April inclusive.\nInner shading = 50% confidence intervals. Outer shading = 95% confidence intervals. Note that forecasting model estimates prior to 13 April — the last recorded data point at the time of analysis (indicated by the dashed grey line) — use data up to and including the previous day. Black dots show the number of new daily cases of COVID-19 reported from 14 to 28 April.\n\nTimeline of the Australian epidemic\nAustralia took an early and precautionary approach to COVID-19. On 1 February, when China was the only country reporting uncontained transmission, Australian authorities restricted all travel from mainland China to Australia, in order to reduce the risk of importation of the virus. Only Australian citizens and residents (and their dependants) were permitted to travel from China to Australia. These individuals were advised to self-quarantine for 14 days from their date of arrival. Further border measures, including enhanced testing and provision of additional advice, were placed on arrivals from other countries, based on a risk-assessment tool developed in early February (Shearer et al., 2020).\nThe day before Australia imposed these restrictions (January 31), 9720 cases of COVID-19 had been reported in mainland China (World Health Organization, 2020c). Australia had so far detected and managed nine imported cases, all with recent travel history from or a direct epidemiological link to Wuhan (Australian Government Department of Health, 2020b). Before the restrictions, Australia was expecting to receive approximately 200,000 air passengers from mainland China during February 2020 (Australian Bureau of Statistics, 2019). Travel numbers fell dramatically following the imposed travel restrictions.\nThese restrictions were not intended (and highly unlikely [Errett et al., 2020]) to prevent the ultimate importation of COVID-19 into Australia. Their purpose was to delay the establishment of an epidemic, buying valuable time for health authorities to plan and prepare.\nDuring the month of February, with extensive testing and case targeted interventions (case isolation and contact quarantine) initiated from 29 January (Australian Government Department of Health, 2020d), Australia detected and managed only 12 cases. Meanwhile, globally, the geographic extent of transmission and daily counts of confirmed cases and deaths continued to increase drastically (World Health Organization, 2020d). In early March, Australia extended travel restrictions to a number of countries with large uncontained outbreaks, namely Iran (as of 1 March) (Commonwealth Government of Australia, 2020a), South Korea (as of 5 March) (Commonwealth Government of Australia, 2020b) and Italy (as of 11 March) (Commonwealth Government of Australia, 2020c).\nDespite these measures, the daily case counts rose sharply in Australia during the first half of March. While the vast majority of these cases were connected to travellers returning to Australia from overseas, localised community transmission had been reported in areas of Sydney (NSW) and Melbourne (VIC) (Australian Government Department of Health, 2020c). Crude plots of the cumulative number of cases by country showed Australia on an early trajectory similar to the outbreaks experienced in China, Europe and the United States, where health systems had become or were becoming overwhelmed (Australian Government Department of Health, 2020f).\nFrom 16 March, the Australian Government progressively implemented a range of social distancing measures in order to reduce and prevent further community transmission (Commonwealth Government of Australia, 2020d). The day before, authorities had imposed a self-quarantine requirement on all international arrivals (Commonwealth Government of Australia, 2020e). On 19 March, Australia closed its borders to all non-citizens and non-residents (Commonwealth Government of Australia, 2020f), and on March 27, moved to a policy of mandatory quarantine for any returning citizens and residents (Commonwealth Government of Australia, 2020g). By 29 March, social distancing measures had been escalated to the extent that all Australians were strongly advised to leave their homes only for limited essential activities and public gatherings were limited to two people (Commonwealth Government of Australia, 2020h).\nBy late March, daily counts of new cases appeared to be declining, suggesting that these measures had successfully reduced transmission.\n\nQuantifying the impact of the response\nQuantifying changes in the rate of spread of infection over the course of an epidemic is critical for monitoring the collective impact of public health interventions and forecasting the short-term clinical burden. A key indicator of transmission in context is the effective reproduction number (R𝑒𝑓𝑓) — the average number of secondary infections caused by an infected individual in the presence of public health interventions and for which no assumption of 100% susceptibility is made. If control efforts are able to bring R𝑒𝑓𝑓 below 1, then on average there will be a decline in the number of new cases reported. The decline will become apparent after a delay of approximately one incubation period plus time to case detection and reporting following implementation of the control measure (i.e., at least two weeks).\nUsing case counts from the Australian national COVID-19 database, we estimated R𝑒𝑓𝑓 over time for each Australian state from 24 February to 5 April 2020 (Figure 2). We used a statistical method that estimates time-varying R𝑒𝑓𝑓 by using an optimally selected moving average window (according to the continuous ranked probability score) to smooth the curve and reduce the impact of localised clusters and outbreaks that may cause large fluctuations (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020). Importantly, the method accounts for time delays between illness onset and case notification. Incorporation of this lag is critical for accurate interpretation of the most recent data in the analysis, to be sure that an observed drop in the number of reported cases reflects an actual drop in case numbers.\nResults show that R𝑒𝑓𝑓 has likely been below one in each Australian state since early-to-mid March. These estimates are geographically averaged results over large areas and it is possible that R𝑒𝑓𝑓 was much higher than one in a number of localised settings (see Figure 2). The estimated time-varying R𝑒𝑓𝑓 value is based on cases that have been identified as a result of local transmission, whereas imported cases only contribute to the force of infection. Imported and locally acquired cases were assumed to be equally infectious. The method for estimating R𝑒𝑓𝑓 is sensitive to this assumption. Hence, we performed a sensitivity analysis to assess the impact of stepwise reductions in the infectiousness of imported cases on R𝑒𝑓𝑓 as a result of quarantine measures implemented over time (see Figure 2—figure supplement 1, Figure 2—figure supplement 2, and Figure 2—figure supplement 3). The sensitivity analyses suggest that R𝑒𝑓𝑓 may well have dropped below one later than shown in Figure 2.\nIn Victoria and New South Wales, the two Australian states with a substantial number of local cases, the effective reproduction number likely dropped from marginally above one to well below one within a two week period (considering both our main result and those from the sensitivity analyses) coinciding with the implementation of social distancing measures. A comparable trend was observed in New Zealand and many Western European countries, including France, Spain and Germany (London School of Hygiene \u0026 Tropical Medicine Mathematical Modelling of Infectious Diseases nCoV working group, 2020), where similar national, stage-wise social distancing policies were enacted (Flaxman et al., 2020). However, most of these European countries experienced widespread community transmission prior to the implementation of social distancing measures, with R𝑒𝑓𝑓 estimates reaching between 1.5 and 2 in early March and declining over a longer period (three to four weeks) relative to Australia.\n\nForecasting the clinical burden\nNext we used our estimates of time-varying R𝑒𝑓𝑓 to forecast the short-term clinical burden in Australia. Estimates were input into a mathematical model of disease dynamics that was extended to account for imported cases. A sequential Monte Carlo method was used to infer the model parameters and appropriately capture the uncertainty (Moss et al., 2019a), conditional on each of a number of sampled R𝑒𝑓𝑓 trajectories up to 5 April, from which point they were assumed to be constant. The model was subsequently projected forward from April 14 to April 28, to forecast the number of reported cases, assuming a symptomatic detection probability of 80%.\nThe number of new daily hospitalisations and ICU admissions were estimated from recently observed and forecast case counts. Specifically, the age distribution of projected cases, and age-specific probabilities of hospitalisation and ICU admission, were extracted from Australian age-specific data on confirmed cases, assuming that this distribution would remain unchanged (see Table 1). In order to calculate the number of occupied ward/ICU beds per day, length-of-stay in a ward bed and ICU bed were assumed to be Gamma distributed with means (SD) of 11 (3.42) days and 14 (5.22) days, respectively. Our results indicated that with the public health interventions in place as of 13 April, Australia’s hospital ward and ICU occupancy would remain well below capacity thresholds over the period from 14 to 28 April.\nTable 1. Age-specific proportions of confirmed cases extracted from the Australian national COVID-19 database and age-specific estimates of the probability of hospitalisation and ICU admission for confirmed cases.\nAge Proportion of cases Pr(hospitalisation | confirmed case) Pr(ICU admission | confirmed case)\n0-9 0.0102 0.1475 0.0000\n10-18 0.0186 0.1081 0.0090\n19-29 0.2258 0.0504 0.0007\n30-39 0.1587 0.0865 0.0074\n40-49 0.1291 0.0947 0.0208\n50-59 0.1550 0.1112 0.0173\n60-69 0.1686 0.1529 0.0318\n70-79 0.1050 0.2440 0.0558\n80+ 0.0290 0.3815 0.0462\n\nConclusions\nOur analysis suggests that Australia’s combined strategy of early, targeted management of the risk of importation, case targeted interventions, and broad-scale social distancing measures applied prior to the onset of (detected) widespread community transmission has substantially mitigated the first wave of COVID-19. More detailed analyses are required to assess the relative impact of specific response measures, and this information will be crucial for the next phase of response planning. Other factors, such as temperature, humidity and population density may influence transmission of SARS-CoV-2 (Kissler et al., 2020). Whether these factors have played a role in the relative control of SARS-CoV-2 in some countries, remains an open question. Noting that epidemics are established in both the northern and southern hemispheres, it may be possible to gain insight into such factors over the next six months, via for example a comparative analysis of transmission in Australia and Europe.\nWe further anticipated that the Australian health care system was well positioned to manage the projected COVID-19 case loads over the forecast period (up to 28 April). Ongoing situational assessment and monitoring of forecast hospital and ICU demand will be essential for managing possible future relaxation of broad-scale community interventions. Vigilance for localised increases in epidemic activity and in particular for outbreaks in vulnerable populations such as residential aged care facilities, where a high proportion of cases are likely to be severe, must be maintained.\nOne largely unknown factor at present is the proportion of SARS-CoV-2 infections that are asymptomatic, mild or undiagnosed. Even if this number is high, the Australian population would still be largely susceptible to infection. Accordingly, complete relaxation of the measures currently in place would see a rapid resurgence in epidemic activity. This problem is not unique to Australia. Many countries with intensive social distancing measures in place are starting to grapple with their options and time frames for a gradual return to relative normalcy (Gottlieb et al., 2020).\nThere are difficult decisions ahead for governments, and for now Australia is one of the few countries fortunate enough to be able to plan the next steps from a position of relative calm as opposed to crisis."}