PMC:7175914 / 6617-7166
Annnotations
LitCovid-PubTator
{"project":"LitCovid-PubTator","denotations":[{"id":"50","span":{"begin":360,"end":372},"obj":"Gene"},{"id":"51","span":{"begin":404,"end":415},"obj":"Gene"}],"attributes":[{"id":"A50","pred":"tao:has_database_id","subj":"50","obj":"Gene:597"}],"namespaces":[{"prefix":"Tax","uri":"https://www.ncbi.nlm.nih.gov/taxonomy/"},{"prefix":"MESH","uri":"https://id.nlm.nih.gov/mesh/"},{"prefix":"Gene","uri":"https://www.ncbi.nlm.nih.gov/gene/"},{"prefix":"CVCL","uri":"https://web.expasy.org/cellosaurus/CVCL_"}],"text":"The SEIRQ epidemic model can be described by the following system of ordinary differential equations(1) S′=p1(t)A(t)−βSI−σβSE−q1(t)S−B1,E′=p2(t)A(t)+βSI+σβSE−νE−q2(t)E−B2,I′=p3(t)A(t)+νE−q3I−αI−B3,R′=γ(t)Iq+αI+αIq,Sq′=q1(t)SEq′=q2(t)E−νEqIq′=q3I+νEq−γ(t)Iq−αIqwhere the prime (′) denotes the differentiation with respect to time t. Here, parameters 0 \u003c β, ν, γ(t), α \u003c 1 and the quarantined rates 0 ≤ q 1(t), q 2(t), q 3 ≤ 1. All the initial values of different individual groups: S(0), E(0), I(0), R(0), S q(0), E q(0), I q(0) are non-negative."}
LitCovid-PD-MONDO
{"project":"LitCovid-PD-MONDO","denotations":[{"id":"T27","span":{"begin":123,"end":125},"obj":"Disease"},{"id":"T28","span":{"begin":155,"end":157},"obj":"Disease"}],"attributes":[{"id":"A27","pred":"mondo_id","subj":"T27","obj":"http://purl.obolibrary.org/obo/MONDO_0002125"},{"id":"A28","pred":"mondo_id","subj":"T28","obj":"http://purl.obolibrary.org/obo/MONDO_0002125"}],"text":"The SEIRQ epidemic model can be described by the following system of ordinary differential equations(1) S′=p1(t)A(t)−βSI−σβSE−q1(t)S−B1,E′=p2(t)A(t)+βSI+σβSE−νE−q2(t)E−B2,I′=p3(t)A(t)+νE−q3I−αI−B3,R′=γ(t)Iq+αI+αIq,Sq′=q1(t)SEq′=q2(t)E−νEqIq′=q3I+νEq−γ(t)Iq−αIqwhere the prime (′) denotes the differentiation with respect to time t. Here, parameters 0 \u003c β, ν, γ(t), α \u003c 1 and the quarantined rates 0 ≤ q 1(t), q 2(t), q 3 ≤ 1. All the initial values of different individual groups: S(0), E(0), I(0), R(0), S q(0), E q(0), I q(0) are non-negative."}
LitCovid-PD-CLO
{"project":"LitCovid-PD-CLO","denotations":[{"id":"T39","span":{"begin":107,"end":109},"obj":"http://purl.obolibrary.org/obo/CLO_0008285"},{"id":"T40","span":{"begin":107,"end":109},"obj":"http://purl.obolibrary.org/obo/CLO_0008286"},{"id":"T41","span":{"begin":112,"end":113},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T42","span":{"begin":139,"end":141},"obj":"http://purl.obolibrary.org/obo/CLO_0008307"},{"id":"T43","span":{"begin":144,"end":145},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T44","span":{"begin":166,"end":170},"obj":"http://purl.obolibrary.org/obo/CLO_0002873"},{"id":"T45","span":{"begin":179,"end":180},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T46","span":{"begin":194,"end":196},"obj":"http://purl.obolibrary.org/obo/CLO_0001812"},{"id":"T47","span":{"begin":230,"end":234},"obj":"http://purl.obolibrary.org/obo/CLO_0009287"},{"id":"T48","span":{"begin":414,"end":418},"obj":"http://purl.obolibrary.org/obo/CLO_0001272"}],"text":"The SEIRQ epidemic model can be described by the following system of ordinary differential equations(1) S′=p1(t)A(t)−βSI−σβSE−q1(t)S−B1,E′=p2(t)A(t)+βSI+σβSE−νE−q2(t)E−B2,I′=p3(t)A(t)+νE−q3I−αI−B3,R′=γ(t)Iq+αI+αIq,Sq′=q1(t)SEq′=q2(t)E−νEqIq′=q3I+νEq−γ(t)Iq−αIqwhere the prime (′) denotes the differentiation with respect to time t. Here, parameters 0 \u003c β, ν, γ(t), α \u003c 1 and the quarantined rates 0 ≤ q 1(t), q 2(t), q 3 ≤ 1. All the initial values of different individual groups: S(0), E(0), I(0), R(0), S q(0), E q(0), I q(0) are non-negative."}
LitCovid-PD-CHEBI
{"project":"LitCovid-PD-CHEBI","denotations":[{"id":"T5","span":{"begin":118,"end":120},"obj":"Chemical"},{"id":"T6","span":{"begin":123,"end":125},"obj":"Chemical"},{"id":"T7","span":{"begin":150,"end":152},"obj":"Chemical"},{"id":"T8","span":{"begin":155,"end":157},"obj":"Chemical"},{"id":"T9","span":{"begin":168,"end":170},"obj":"Chemical"}],"attributes":[{"id":"A5","pred":"chebi_id","subj":"T5","obj":"http://purl.obolibrary.org/obo/CHEBI_90326"},{"id":"A6","pred":"chebi_id","subj":"T6","obj":"http://purl.obolibrary.org/obo/CHEBI_74813"},{"id":"A7","pred":"chebi_id","subj":"T7","obj":"http://purl.obolibrary.org/obo/CHEBI_90326"},{"id":"A8","pred":"chebi_id","subj":"T8","obj":"http://purl.obolibrary.org/obo/CHEBI_74813"},{"id":"A9","pred":"chebi_id","subj":"T9","obj":"http://purl.obolibrary.org/obo/CHEBI_51707"}],"text":"The SEIRQ epidemic model can be described by the following system of ordinary differential equations(1) S′=p1(t)A(t)−βSI−σβSE−q1(t)S−B1,E′=p2(t)A(t)+βSI+σβSE−νE−q2(t)E−B2,I′=p3(t)A(t)+νE−q3I−αI−B3,R′=γ(t)Iq+αI+αIq,Sq′=q1(t)SEq′=q2(t)E−νEqIq′=q3I+νEq−γ(t)Iq−αIqwhere the prime (′) denotes the differentiation with respect to time t. Here, parameters 0 \u003c β, ν, γ(t), α \u003c 1 and the quarantined rates 0 ≤ q 1(t), q 2(t), q 3 ≤ 1. All the initial values of different individual groups: S(0), E(0), I(0), R(0), S q(0), E q(0), I q(0) are non-negative."}
LitCovid-sentences
{"project":"LitCovid-sentences","denotations":[{"id":"T42","span":{"begin":0,"end":331},"obj":"Sentence"},{"id":"T43","span":{"begin":332,"end":429},"obj":"Sentence"},{"id":"T44","span":{"begin":430,"end":549},"obj":"Sentence"}],"namespaces":[{"prefix":"_base","uri":"http://pubannotation.org/ontology/tao.owl#"}],"text":"The SEIRQ epidemic model can be described by the following system of ordinary differential equations(1) S′=p1(t)A(t)−βSI−σβSE−q1(t)S−B1,E′=p2(t)A(t)+βSI+σβSE−νE−q2(t)E−B2,I′=p3(t)A(t)+νE−q3I−αI−B3,R′=γ(t)Iq+αI+αIq,Sq′=q1(t)SEq′=q2(t)E−νEqIq′=q3I+νEq−γ(t)Iq−αIqwhere the prime (′) denotes the differentiation with respect to time t. Here, parameters 0 \u003c β, ν, γ(t), α \u003c 1 and the quarantined rates 0 ≤ q 1(t), q 2(t), q 3 ≤ 1. All the initial values of different individual groups: S(0), E(0), I(0), R(0), S q(0), E q(0), I q(0) are non-negative."}