PMC:7175914 / 23609-24617
Annnotations
LitCovid-PubTator
{"project":"LitCovid-PubTator","denotations":[{"id":"158","span":{"begin":26,"end":61},"obj":"Gene"},{"id":"159","span":{"begin":225,"end":302},"obj":"Gene"},{"id":"160","span":{"begin":635,"end":663},"obj":"Gene"},{"id":"161","span":{"begin":750,"end":753},"obj":"Gene"}],"attributes":[{"id":"A158","pred":"tao:has_database_id","subj":"158","obj":"Gene:5375"},{"id":"A159","pred":"tao:has_database_id","subj":"159","obj":"Gene:5375"},{"id":"A161","pred":"tao:has_database_id","subj":"161","obj":"Gene:5366"}],"namespaces":[{"prefix":"Tax","uri":"https://www.ncbi.nlm.nih.gov/taxonomy/"},{"prefix":"MESH","uri":"https://id.nlm.nih.gov/mesh/"},{"prefix":"Gene","uri":"https://www.ncbi.nlm.nih.gov/gene/"},{"prefix":"CVCL","uri":"https://web.expasy.org/cellosaurus/CVCL_"}],"text":"For time point t 1 = 10, Sce 1: (p 2, A, q 1, q 2) = (1.5p 2 * , 1.5A * , 0q 1 * , 0q 2 *), Sce 2: (p 2, A, q 1, q 2) = (1.5p 2 * , 2A * , 0q 1 * , 0q 2 *), Sce 7: (p 2, A, q 1, q 2) = (2p 2 * , 1.5A * , 0q 1 * , 0q 2 *) and Sce 8: (p 2, A, q 1, q 2) = (2p 2 * , 2A * , 0q 1 * , 0q 2 *) have the MVCCC larger than 10 million at 328, 313, 327 and 312 days (Fig. 8A, STable 3). In fact, they have the two outbreaks of the disease with the confirmed cases having the first peak value as the baseline result at Feb 10, 2020 and the second peak values larger than 1 million at 142 days, 132 days, 141 days and 130 days for Sce1, Sce 2, Sce 7 and Sce 8, respectively (Fig. 9A, STable 3). The magnified figure in the period of Jan 27, 2020-Apr 26, 2020 clearly displays the second outbreak of this disease (Fig. 9A). Moreover, the weak changes of the four scenarios in the quarantine rates or around the time point t 1 = 10, the second outbreak also resulted in the second outbreak of the disease."}
LitCovid-PD-CLO
{"project":"LitCovid-PD-CLO","denotations":[{"id":"T127","span":{"begin":34,"end":37},"obj":"http://purl.obolibrary.org/obo/CLO_0008307"},{"id":"T128","span":{"begin":39,"end":40},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T129","span":{"begin":105,"end":108},"obj":"http://purl.obolibrary.org/obo/CLO_0008307"},{"id":"T130","span":{"begin":110,"end":111},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T131","span":{"begin":138,"end":140},"obj":"http://purl.obolibrary.org/obo/CLO_0001236"},{"id":"T132","span":{"begin":174,"end":177},"obj":"http://purl.obolibrary.org/obo/CLO_0008307"},{"id":"T133","span":{"begin":179,"end":180},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T134","span":{"begin":246,"end":249},"obj":"http://purl.obolibrary.org/obo/CLO_0008307"},{"id":"T135","span":{"begin":251,"end":252},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T136","span":{"begin":277,"end":279},"obj":"http://purl.obolibrary.org/obo/CLO_0001236"},{"id":"T137","span":{"begin":599,"end":602},"obj":"http://purl.obolibrary.org/obo/CLO_0054061"},{"id":"T138","span":{"begin":741,"end":743},"obj":"http://purl.obolibrary.org/obo/CLO_0050509"}],"text":"For time point t 1 = 10, Sce 1: (p 2, A, q 1, q 2) = (1.5p 2 * , 1.5A * , 0q 1 * , 0q 2 *), Sce 2: (p 2, A, q 1, q 2) = (1.5p 2 * , 2A * , 0q 1 * , 0q 2 *), Sce 7: (p 2, A, q 1, q 2) = (2p 2 * , 1.5A * , 0q 1 * , 0q 2 *) and Sce 8: (p 2, A, q 1, q 2) = (2p 2 * , 2A * , 0q 1 * , 0q 2 *) have the MVCCC larger than 10 million at 328, 313, 327 and 312 days (Fig. 8A, STable 3). In fact, they have the two outbreaks of the disease with the confirmed cases having the first peak value as the baseline result at Feb 10, 2020 and the second peak values larger than 1 million at 142 days, 132 days, 141 days and 130 days for Sce1, Sce 2, Sce 7 and Sce 8, respectively (Fig. 9A, STable 3). The magnified figure in the period of Jan 27, 2020-Apr 26, 2020 clearly displays the second outbreak of this disease (Fig. 9A). Moreover, the weak changes of the four scenarios in the quarantine rates or around the time point t 1 = 10, the second outbreak also resulted in the second outbreak of the disease."}
LitCovid-sentences
{"project":"LitCovid-sentences","denotations":[{"id":"T162","span":{"begin":0,"end":392},"obj":"Sentence"},{"id":"T163","span":{"begin":393,"end":698},"obj":"Sentence"},{"id":"T164","span":{"begin":699,"end":826},"obj":"Sentence"},{"id":"T165","span":{"begin":827,"end":1008},"obj":"Sentence"}],"namespaces":[{"prefix":"_base","uri":"http://pubannotation.org/ontology/tao.owl#"}],"text":"For time point t 1 = 10, Sce 1: (p 2, A, q 1, q 2) = (1.5p 2 * , 1.5A * , 0q 1 * , 0q 2 *), Sce 2: (p 2, A, q 1, q 2) = (1.5p 2 * , 2A * , 0q 1 * , 0q 2 *), Sce 7: (p 2, A, q 1, q 2) = (2p 2 * , 1.5A * , 0q 1 * , 0q 2 *) and Sce 8: (p 2, A, q 1, q 2) = (2p 2 * , 2A * , 0q 1 * , 0q 2 *) have the MVCCC larger than 10 million at 328, 313, 327 and 312 days (Fig. 8A, STable 3). In fact, they have the two outbreaks of the disease with the confirmed cases having the first peak value as the baseline result at Feb 10, 2020 and the second peak values larger than 1 million at 142 days, 132 days, 141 days and 130 days for Sce1, Sce 2, Sce 7 and Sce 8, respectively (Fig. 9A, STable 3). The magnified figure in the period of Jan 27, 2020-Apr 26, 2020 clearly displays the second outbreak of this disease (Fig. 9A). Moreover, the weak changes of the four scenarios in the quarantine rates or around the time point t 1 = 10, the second outbreak also resulted in the second outbreak of the disease."}