> top > docs > PMC:7175914 > annotations

PMC:7175914 JSONTXT

Annnotations TAB JSON ListView MergeView

LitCovid-PubTator

Id Subject Object Predicate Lexical cue tao:has_database_id
1 33-41 Disease denotes COVID-19 MESH:C000657245
10 1570-1576 Species denotes people Tax:9606
11 1697-1703 Species denotes people Tax:9606
12 1734-1748 Species denotes COVID-19 virus Tax:2697049
13 2224-2230 Species denotes People Tax:9606
14 1605-1613 Disease denotes COVID-19 MESH:C000657245
15 1717-1726 Disease denotes infection MESH:D007239
16 1924-1932 Disease denotes COVID-19 MESH:C000657245
17 2056-2064 Disease denotes COVID-19 MESH:C000657245
20 2402-2410 Disease denotes COVID-19 MESH:C000657245
21 2881-2889 Disease denotes COVID-19 MESH:C000657245
25 3183-3191 Disease denotes COVID-19 MESH:C000657245
26 3347-3355 Disease denotes COVID-19 MESH:C000657245
27 3797-3805 Disease denotes COVID-19 MESH:C000657245
34 5532-5546 Gene denotes q 1(t) and q 3
35 4655-4663 Disease denotes COVID-19 MESH:C000657245
36 5007-5015 Disease denotes COVID-19 MESH:C000657245
37 5552-5557 Disease denotes death MESH:D003643
38 5578-5586 Disease denotes COVID-19 MESH:C000657245
39 5771-5779 Disease denotes infected MESH:D007239
41 6586-6594 Disease denotes COVID-19 MESH:C000657245
45 6121-6143 Gene denotes p 2(t)A(t) and p 3(t)A
46 6361-6372 Gene denotes B 2 and B 3 Gene:28907
47 6470-6478 Disease denotes COVID-19 MESH:C000657245
50 6977-6989 Gene denotes γ(t), α  < 1 Gene:597
51 7021-7032 Gene denotes q 1(t), q 2
55 7463-7469 Species denotes People Tax:9606
56 7192-7200 Disease denotes COVID-19 MESH:C000657245
57 7737-7742 Disease denotes death MESH:D003643
59 8545-8553 Disease denotes COVID-19 MESH:C000657245
63 8625-8633 Disease denotes COVID-19 MESH:C000657245
64 8803-8811 Disease denotes infected MESH:D007239
65 8819-8827 Disease denotes COVID-19 MESH:C000657245
68 9086-9159 Gene denotes (A, B, p 1, p 2, p 3, q 1, q 2, q 3, α, β, ν, σ, γ) = (A* , B  * , p 1  *
69 9162-9165 Gene denotes p 2 Gene:5375
71 9518-9526 Disease denotes COVID-19 MESH:C000657245
73 10265-10273 Disease denotes COVID-19 MESH:C000657245
75 10943-10951 Disease denotes COVID-19 MESH:C000657245
77 12772-12780 Disease denotes COVID-19 MESH:C000657245
79 10332-10340 Disease denotes COVID-19 MESH:C000657245
82 13291-13299 Disease denotes COVID-19 MESH:C000657245
83 14147-14155 Disease denotes COVID-19 MESH:C000657245
85 14282-14290 Disease denotes COVID-19 MESH:C000657245
87 15395-15447 Gene denotes RE (%) 24/2 25/2 26/2 27/2 28/2 29/2 1/3 2/3 3/3 4/3
89 17417-17425 Disease denotes COVID-19 MESH:C000657245
91 17655-17663 Disease denotes COVID-19 MESH:C000657245
100 16135-16138 Gene denotes Apr Gene:5366
101 16167-16208 Gene denotes Apr 4, 2020) at Sce 1: (p 2, A) = (p 2  * Gene:7020
102 16224-16254 Gene denotes Sce 2: (p 2, A) = (p 2  * , 2A
103 16977-16980 Gene denotes Apr Gene:5366
104 17009-17012 Gene denotes Apr Gene:5366
105 15800-15803 Gene denotes p 2 Gene:5375
106 16878-16881 Chemical denotes DDE
107 17075-17083 Disease denotes COVID-19 MESH:C000657245
111 17819-17851 Gene denotes For Sce 3: (p 2, A) = (1.5p 2  *
112 17864-17890 Gene denotes Sce 6: (p 2, A) = (2p 2  *
113 18067-18070 Chemical denotes DDE
115 20767-20775 Disease denotes COVID-19 MESH:C000657245
117 21005-21013 Disease denotes COVID-19 MESH:C000657245
125 19418-19455 Gene denotes Sce 1 (q 1, q 2) = (0q 1  * , 0q 2  *
126 20086-20161 Gene denotes q 1, q 2) = (0q 1  * , 0.5q 2  *) and Sce 3: (q 1, q 2) = (0q 1  * , q 2  *
127 20354-20380 Gene denotes MVCCC of Sce 4: (q 1, q 2)
128 20408-20480 Gene denotes Sce 5: (q 1, q 2) = (0.5q 1  * , q 2  *) and Sce 6: (q 1, q 2) = (q 1  *
129 20346-20349 Chemical denotes DDE
130 19311-19319 Disease denotes COVID-19 MESH:C000657245
131 19499-19507 Disease denotes COVID-19 MESH:C000657245
134 21202-21240 Gene denotes Sce 1: (q 1, q 2) = (0q 1  * , 0q 2  *
135 21280-21283 Chemical denotes DDE
139 22279-22293 Gene denotes q1, q2) = (0q1
140 22123-22131 Disease denotes COVID-19 MESH:C000657245
141 22156-22164 Disease denotes COVID-19 MESH:C000657245
144 21736-21744 Gene denotes q 1, q 2
145 21817-21837 Gene denotes q 1, q 2) = (0q 1  *
147 23169-23177 Disease denotes COVID-19 MESH:C000657245
149 23444-23452 Disease denotes COVID-19 MESH:C000657245
152 22520-22528 Disease denotes COVID-19 MESH:C000657245
153 22875-22883 Disease denotes COVID-19 MESH:C000657245
158 23635-23670 Gene denotes Sce 1: (p 2, A, q 1, q 2) = (1.5p 2 Gene:5375
159 23834-23911 Gene denotes 0q 2  *) and Sce 8: (p 2, A, q 1, q 2) = (2p 2  * , 2A  * , 0q 1  * , 0q 2  * Gene:5375
160 24244-24272 Gene denotes Sce1, Sce 2, Sce 7 and Sce 8
161 24359-24362 Gene denotes Apr Gene:5366
163 24829-24832 Chemical denotes DDE
166 24997-25000 Chemical denotes DDE
167 25205-25213 Disease denotes infected MESH:D007239
171 25385-25391 Species denotes people Tax:9606
172 25614-25620 Species denotes People Tax:9606
173 25284-25292 Disease denotes COVID-19 MESH:C000657245
175 25692-25700 Disease denotes COVID-19 MESH:C000657245
178 28235-28249 Species denotes COVID-19 virus Tax:2697049
179 27628-27636 Disease denotes COVID-19 MESH:C000657245
181 28555-28563 Disease denotes COVID-19 MESH:C000657245
183 30515-30523 Disease denotes infected MESH:D007239
186 31014-31020 Species denotes people Tax:9606
187 30965-30973 Disease denotes COVID-19 MESH:C000657245
189 31183-31191 Disease denotes COVID-19 MESH:C000657245
191 31403-31411 Disease denotes COVID-19 MESH:C000657245
193 31985-31992 Species denotes patient Tax:9606
195 32603-32609 Species denotes people Tax:9606

2_test

Id Subject Object Predicate Lexical cue
32334117-32145465-50061998 2718-2722 32145465 denotes 2020
32334117-32145465-50061999 3049-3053 32145465 denotes 2020
T76922 2718-2722 32145465 denotes 2020
T95443 3049-3053 32145465 denotes 2020

LitCovid-PMC-OGER-BB

Id Subject Object Predicate Lexical cue
T1 33-41 SP_7 denotes COVID-19
T2 1201-1212 NCBITaxon:1 denotes individuals
T3 1570-1576 NCBITaxon:9606 denotes people
T4 1605-1613 SP_7 denotes COVID-19
T5 1661-1672 GO:0065007 denotes controlling
T6 1697-1703 NCBITaxon:9606 denotes people
T7 1734-1742 SP_7 denotes COVID-19
T8 1743-1748 NCBITaxon:10239 denotes virus
T9 1924-1932 SP_7 denotes COVID-19
T10 2056-2064 SP_7 denotes COVID-19
T11 2402-2410 SP_7 denotes COVID-19
T12 2851-2862 GO:0065007 denotes controlling
T13 2881-2889 SP_7 denotes COVID-19
T14 3129-3149 GO:0016477 denotes population migration
T15 3183-3191 SP_7 denotes COVID-19
T16 3347-3355 SP_7 denotes COVID-19
T17 3371-3378 GO:0065007 denotes control
T18 3479-3486 GO:0065007 denotes control
T19 3743-3763 GO:0016477 denotes population migration
T20 3797-3805 SP_7 denotes COVID-19
T21 4655-4663 SP_7 denotes COVID-19
T22 4774-4785 NCBITaxon:1 denotes individuals
T23 4800-4811 NCBITaxon:1 denotes individuals
T24 4829-4840 NCBITaxon:1 denotes individuals
T25 4855-4866 NCBITaxon:1 denotes individuals
T26 4897-4908 NCBITaxon:1 denotes individuals
T27 4937-4948 NCBITaxon:1 denotes individuals
T28 4983-4994 NCBITaxon:1 denotes individuals
T29 5007-5015 SP_7 denotes COVID-19
T30 5170-5181 NCBITaxon:1 denotes individuals
T31 5257-5268 NCBITaxon:1 denotes individuals
T32 5298-5309 NCBITaxon:1 denotes individuals
T33 5347-5358 NCBITaxon:1 denotes individuals
T34 5391-5402 NCBITaxon:1 denotes individuals
T35 5479-5490 NCBITaxon:1 denotes individuals
T36 5511-5522 NCBITaxon:1 denotes individuals
T37 5552-5557 GO:0016265 denotes death
T38 5578-5586 SP_7 denotes COVID-19
T39 5619-5630 NCBITaxon:1 denotes individuals
T40 5663-5674 NCBITaxon:1 denotes individuals
T41 5711-5722 NCBITaxon:1 denotes individuals
T42 5780-5791 NCBITaxon:1 denotes individuals
T43 5835-5846 NCBITaxon:1 denotes individuals
T44 5991-6002 NCBITaxon:1 denotes individuals
T45 6017-6028 NCBITaxon:1 denotes individuals
T46 6049-6060 NCBITaxon:1 denotes individuals
T47 6094-6105 NCBITaxon:1 denotes individuals
T48 6217-6228 NCBITaxon:1 denotes individuals
T49 6238-6249 NCBITaxon:1 denotes individuals
T50 6262-6273 NCBITaxon:1 denotes individuals
T51 6393-6404 NCBITaxon:1 denotes individuals
T52 6419-6430 NCBITaxon:1 denotes individuals
T53 6448-6459 NCBITaxon:1 denotes individuals
T54 6470-6478 SP_7 denotes COVID-19
T55 6504-6524 GO:0016477 denotes population migration
T56 6586-6594 SP_7 denotes COVID-19
T58 7192-7200 SP_7 denotes COVID-19
T59 7463-7469 NCBITaxon:9606 denotes People
T60 7737-7742 GO:0016265 denotes death
T61 8230-8250 GO:0016477 denotes population migration
T62 8545-8553 SP_7 denotes COVID-19
T63 8625-8633 SP_7 denotes COVID-19
T64 8819-8827 SP_7 denotes COVID-19
T65 9518-9526 SP_7 denotes COVID-19
T66 10265-10273 SP_7 denotes COVID-19
T67 10332-10340 SP_7 denotes COVID-19
T76 10943-10951 SP_7 denotes COVID-19
T77 12772-12780 SP_7 denotes COVID-19
T78 13291-13299 SP_7 denotes COVID-19
T79 14147-14155 SP_7 denotes COVID-19
T80 14282-14290 SP_7 denotes COVID-19
T81 15819-15830 NCBITaxon:1 denotes individuals
T82 17075-17083 SP_7 denotes COVID-19
T83 17417-17425 SP_7 denotes COVID-19
T84 17655-17663 SP_7 denotes COVID-19
T87 17940-17951 NCBITaxon:1 denotes individuals
T88 18923-18934 NCBITaxon:1 denotes individuals
T89 19094-19105 NCBITaxon:1 denotes individuals
T90 19311-19319 SP_7 denotes COVID-19
T91 19499-19507 SP_7 denotes COVID-19
T92 20767-20775 SP_7 denotes COVID-19
T93 21005-21013 SP_7 denotes COVID-19
T96 21959-21970 NCBITaxon:1 denotes individuals
T97 21983-21994 NCBITaxon:1 denotes individuals
T98 22123-22131 SP_7 denotes COVID-19
T99 22156-22164 SP_7 denotes COVID-19
T102 22520-22528 SP_7 denotes COVID-19
T103 22875-22883 SP_7 denotes COVID-19
T104 23169-23177 SP_7 denotes COVID-19
T105 23444-23452 SP_7 denotes COVID-19
T108 25093-25104 NCBITaxon:1 denotes individuals
T109 25214-25225 NCBITaxon:1 denotes individuals
T110 25284-25292 SP_7 denotes COVID-19
T111 25385-25391 NCBITaxon:9606 denotes people
T112 25614-25620 NCBITaxon:9606 denotes People
T113 25692-25700 SP_7 denotes COVID-19
T114 25810-25817 GO:0065007 denotes control
T115 27051-27062 NCBITaxon:1 denotes individuals
T116 27320-27331 NCBITaxon:1 denotes individuals
T117 27413-27424 NCBITaxon:1 denotes individuals
T118 27628-27636 SP_7 denotes COVID-19
T119 27726-27737 NCBITaxon:1 denotes individuals
T120 27767-27778 NCBITaxon:1 denotes individuals
T121 27965-27976 NCBITaxon:1 denotes individuals
T122 28085-28096 NCBITaxon:1 denotes individuals
T123 28128-28139 NCBITaxon:1 denotes individuals
T124 28200-28211 GO:0065007 denotes controlling
T125 28235-28243 SP_7 denotes COVID-19
T126 28244-28249 NCBITaxon:10239 denotes virus
T127 28303-28308 UBERON:0002398 denotes hands
T128 28393-28404 NCBITaxon:1 denotes individuals
T129 28435-28446 NCBITaxon:1 denotes individuals
T130 28555-28563 SP_7 denotes COVID-19
T131 29639-29650 NCBITaxon:1 denotes individuals
T132 29810-29821 NCBITaxon:1 denotes individuals
T133 29988-29999 NCBITaxon:1 denotes individuals
T134 30012-30023 NCBITaxon:1 denotes individuals
T135 30524-30535 NCBITaxon:1 denotes individuals
T136 30965-30973 SP_7 denotes COVID-19
T137 31014-31020 NCBITaxon:9606 denotes people
T138 31183-31191 SP_7 denotes COVID-19
T139 31403-31411 SP_7 denotes COVID-19
T140 31613-31620 GO:0065007 denotes control
T144 32603-32609 NCBITaxon:9606 denotes people
T93453 33-41 SP_7 denotes COVID-19

LitCovid-PD-FMA-UBERON

Id Subject Object Predicate Lexical cue fma_id
T1 3610-3614 Body_part denotes back http://purl.org/sig/ont/fma/fma25056
T2 4731-4743 Body_part denotes compartments http://purl.org/sig/ont/fma/fma76577
T3 25930-25934 Body_part denotes back http://purl.org/sig/ont/fma/fma25056
T4 27747-27751 Body_part denotes back http://purl.org/sig/ont/fma/fma25056
T5 28405-28409 Body_part denotes back http://purl.org/sig/ont/fma/fma25056
T6 33372-33380 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542
T7 33759-33767 Body_part denotes Appendix http://purl.org/sig/ont/fma/fma14542

LitCovid-PD-UBERON

Id Subject Object Predicate Lexical cue uberon_id
T1 2948-2957 Body_part denotes extension http://purl.obolibrary.org/obo/UBERON_2000106
T2 28303-28308 Body_part denotes hands http://purl.obolibrary.org/obo/UBERON_0002398

LitCovid-PD-MONDO

Id Subject Object Predicate Lexical cue mondo_id
T1 33-41 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T2 1605-1613 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T3 1717-1726 Disease denotes infection http://purl.obolibrary.org/obo/MONDO_0005550
T4 1734-1742 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T5 1924-1932 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T6 2056-2064 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T7 2402-2410 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T8 2881-2889 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T9 3183-3191 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T10 3347-3355 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T11 3797-3805 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T12 4655-4663 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T13 4818-4828 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T14 4972-4982 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T15 5007-5015 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T16 5336-5346 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T17 5380-5390 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T18 5500-5510 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T19 5578-5586 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T20 5608-5618 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T21 5652-5662 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T22 6038-6048 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T23 6251-6261 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T24 6437-6447 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T25 6470-6478 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T26 6586-6594 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T27 6740-6742 Disease denotes SE http://purl.obolibrary.org/obo/MONDO_0002125
T28 6772-6774 Disease denotes SE http://purl.obolibrary.org/obo/MONDO_0002125
T29 7192-7200 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T30 8545-8553 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T31 8625-8633 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T32 8819-8827 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T33 9518-9526 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T34 10265-10273 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T35 10332-10340 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T36 10943-10951 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T37 12772-12780 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T38 13291-13299 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T39 14147-14155 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T40 14282-14290 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T41 17075-17083 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T42 17417-17425 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T43 17655-17663 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T44 19311-19319 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T45 19499-19507 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T46 20767-20775 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T47 21005-21013 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T48 22123-22131 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T49 22156-22164 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T50 22520-22528 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T51 22875-22883 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T52 23169-23177 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T53 23444-23452 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T54 25284-25292 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T55 25692-25700 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T56 27040-27050 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T57 27628-27636 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T58 28235-28243 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T59 28555-28563 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T60 30965-30973 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T61 31183-31191 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T62 31403-31411 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096

LitCovid-PD-CLO

Id Subject Object Predicate Lexical cue
T1 110-111 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T2 486-497 http://purl.obolibrary.org/obo/CLO_0009985 denotes was focused
T3 521-523 http://purl.obolibrary.org/obo/CLO_0050509 denotes 27
T4 1043-1045 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T5 1290-1291 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T6 1636-1645 http://www.ebi.ac.uk/efo/EFO_0000876 denotes extremely
T7 1743-1748 http://purl.obolibrary.org/obo/NCBITaxon_10239 denotes virus
T8 1837-1838 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T9 2172-2174 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T10 2837-2838 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T11 3232-3235 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T12 3700-3701 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T13 3852-3859 http://www.ebi.ac.uk/efo/EFO_0000876 denotes extreme
T14 3971-3976 http://purl.obolibrary.org/obo/CLO_0009985 denotes focus
T15 4225-4237 http://purl.obolibrary.org/obo/OBI_0000245 denotes organization
T16 4496-4497 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T17 4786-4790 http://purl.obolibrary.org/obo/CLO_0009141 denotes S(t)
T18 4786-4790 http://purl.obolibrary.org/obo/CLO_0050980 denotes S(t)
T19 5052-5056 http://purl.obolibrary.org/obo/CLO_0009141 denotes S(t)
T20 5052-5056 http://purl.obolibrary.org/obo/CLO_0050980 denotes S(t)
T21 5104-5108 http://purl.obolibrary.org/obo/CLO_0009141 denotes S(t)
T22 5104-5108 http://purl.obolibrary.org/obo/CLO_0050980 denotes S(t)
T23 5182-5186 http://purl.obolibrary.org/obo/CLO_0009141 denotes S(t)
T24 5182-5186 http://purl.obolibrary.org/obo/CLO_0050980 denotes S(t)
T25 6003-6007 http://purl.obolibrary.org/obo/CLO_0009141 denotes S(t)
T26 6003-6007 http://purl.obolibrary.org/obo/CLO_0050980 denotes S(t)
T27 6109-6112 http://purl.obolibrary.org/obo/CLO_0008285 denotes p 1
T28 6109-6112 http://purl.obolibrary.org/obo/CLO_0008286 denotes p 1
T29 6115-6116 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T30 6121-6124 http://purl.obolibrary.org/obo/CLO_0008307 denotes p 2
T31 6127-6128 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T32 6142-6143 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T33 6303-6304 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T34 6356-6357 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T35 6361-6362 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T36 6369-6372 http://purl.obolibrary.org/obo/CLO_0001812 denotes B 3
T37 6405-6409 http://purl.obolibrary.org/obo/CLO_0009141 denotes S(t)
T38 6405-6409 http://purl.obolibrary.org/obo/CLO_0050980 denotes S(t)
T39 6724-6726 http://purl.obolibrary.org/obo/CLO_0008285 denotes p1
T40 6724-6726 http://purl.obolibrary.org/obo/CLO_0008286 denotes p1
T41 6729-6730 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T42 6756-6758 http://purl.obolibrary.org/obo/CLO_0008307 denotes p2
T43 6761-6762 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T44 6783-6787 http://purl.obolibrary.org/obo/CLO_0002873 denotes E−B2
T45 6796-6797 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T46 6811-6813 http://purl.obolibrary.org/obo/CLO_0001812 denotes B3
T47 6847-6851 http://purl.obolibrary.org/obo/CLO_0009287 denotes (t)E
T48 7031-7035 http://purl.obolibrary.org/obo/CLO_0001272 denotes 2(t)
T49 7870-7874 http://purl.obolibrary.org/obo/CLO_0001185 denotes 2018
T50 8482-8484 http://purl.obolibrary.org/obo/CLO_0050509 denotes 27
T51 8579-8581 http://purl.obolibrary.org/obo/CLO_0050509 denotes 27
T52 8649-8654 http://purl.obolibrary.org/obo/CLO_0009985 denotes focus
T53 9087-9088 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T54 9090-9091 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T55 9093-9096 http://purl.obolibrary.org/obo/CLO_0008285 denotes p 1
T56 9093-9096 http://purl.obolibrary.org/obo/CLO_0008286 denotes p 1
T57 9098-9101 http://purl.obolibrary.org/obo/CLO_0008307 denotes p 2
T58 9141-9142 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T59 9146-9147 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T60 9153-9156 http://purl.obolibrary.org/obo/CLO_0008285 denotes p 1
T61 9153-9156 http://purl.obolibrary.org/obo/CLO_0008286 denotes p 1
T62 9162-9165 http://purl.obolibrary.org/obo/CLO_0008307 denotes p 2
T63 9890-9892 http://purl.obolibrary.org/obo/CLO_0051456 denotes AE
T64 10550-10552 http://purl.obolibrary.org/obo/CLO_0050509 denotes 27
T65 10768-10770 http://purl.obolibrary.org/obo/CLO_0051456 denotes AE
T66 11561-11562 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T67 11618-11620 http://purl.obolibrary.org/obo/CLO_0008285 denotes p1
T68 11618-11620 http://purl.obolibrary.org/obo/CLO_0008286 denotes p1
T69 11696-11698 http://purl.obolibrary.org/obo/CLO_0008307 denotes p2
T70 12467-12469 http://purl.obolibrary.org/obo/CLO_0051456 denotes AE
T71 12494-12496 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T72 12499-12503 http://purl.obolibrary.org/obo/CLO_0001203 denotes 23/2
T73 12805-12806 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T74 12837-12838 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T75 13045-13046 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T76 13056-13057 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T77 13067-13069 http://purl.obolibrary.org/obo/CLO_0008285 denotes p1
T78 13067-13069 http://purl.obolibrary.org/obo/CLO_0008286 denotes p1
T79 13083-13085 http://purl.obolibrary.org/obo/CLO_0008307 denotes p2
T80 13244-13247 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T81 13588-13590 http://purl.obolibrary.org/obo/CLO_0051456 denotes AE
T82 13913-13915 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T83 14059-14062 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T84 14328-14331 http://purl.obolibrary.org/obo/CLO_0054060 denotes 102
T85 14365-14367 http://purl.obolibrary.org/obo/CLO_0001236 denotes 2A
T86 15008-15010 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T87 15252-15253 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T88 15405-15409 http://purl.obolibrary.org/obo/CLO_0001196 denotes 2 25
T89 15417-15419 http://purl.obolibrary.org/obo/CLO_0050509 denotes 27
T90 15432-15437 http://purl.obolibrary.org/obo/CLO_0054061 denotes 1/3 2
T91 15442-15445 http://purl.obolibrary.org/obo/CLO_0001302 denotes 3 4
T92 15800-15803 http://purl.obolibrary.org/obo/CLO_0008307 denotes p 2
T93 15854-15855 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T94 16191-16194 http://purl.obolibrary.org/obo/CLO_0008307 denotes p 2
T95 16196-16203 http://purl.obolibrary.org/obo/CLO_0001547 denotes A) = (p
T96 16232-16235 http://purl.obolibrary.org/obo/CLO_0008307 denotes p 2
T97 16237-16244 http://purl.obolibrary.org/obo/CLO_0001547 denotes A) = (p
T98 16252-16254 http://purl.obolibrary.org/obo/CLO_0001236 denotes 2A
T99 16790-16792 http://purl.obolibrary.org/obo/CLO_0001236 denotes 2A
T100 16799-16800 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T101 16981-16983 http://purl.obolibrary.org/obo/CLO_0050510 denotes 18
T102 17454-17455 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T103 17467-17468 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T104 17692-17693 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T105 17705-17706 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T106 17831-17834 http://purl.obolibrary.org/obo/CLO_0008307 denotes p 2
T107 17836-17837 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T108 17847-17855 http://purl.obolibrary.org/obo/CLO_0001236 denotes 2  * , A
T109 17872-17875 http://purl.obolibrary.org/obo/CLO_0008307 denotes p 2
T110 17877-17878 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T111 17886-17894 http://purl.obolibrary.org/obo/CLO_0001236 denotes 2  * , A
T112 19012-19013 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T113 19457-19460 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T114 19816-19817 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T115 20804-20805 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T116 20817-20818 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T117 21042-21043 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T118 21055-21056 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T119 21859-21861 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T120 22139-22140 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T121 22172-22173 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T122 22313-22315 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T123 23206-23207 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T124 23219-23220 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T125 23481-23482 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T126 23494-23495 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T127 23643-23646 http://purl.obolibrary.org/obo/CLO_0008307 denotes p 2
T128 23648-23649 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T129 23714-23717 http://purl.obolibrary.org/obo/CLO_0008307 denotes p 2
T130 23719-23720 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T131 23747-23749 http://purl.obolibrary.org/obo/CLO_0001236 denotes 2A
T132 23783-23786 http://purl.obolibrary.org/obo/CLO_0008307 denotes p 2
T133 23788-23789 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T134 23855-23858 http://purl.obolibrary.org/obo/CLO_0008307 denotes p 2
T135 23860-23861 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T136 23886-23888 http://purl.obolibrary.org/obo/CLO_0001236 denotes 2A
T137 24208-24211 http://purl.obolibrary.org/obo/CLO_0054061 denotes 132
T138 24350-24352 http://purl.obolibrary.org/obo/CLO_0050509 denotes 27
T139 26082-26083 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T140 26177-26178 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T141 26616-26617 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T142 26812-26813 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T143 28244-28249 http://purl.obolibrary.org/obo/NCBITaxon_10239 denotes virus
T144 28772-28774 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T145 29015-29016 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T146 29341-29342 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T147 29360-29361 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T148 29728-29729 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T149 31450-31452 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T150 31765-31766 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T151 32613-32626 http://purl.obolibrary.org/obo/OBI_0000245 denotes organizations
T152 33381-33382 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T153 33694-33696 http://purl.obolibrary.org/obo/CLO_0007860 denotes Mr
T154 33768-33769 http://purl.obolibrary.org/obo/CLO_0001020 denotes A

LitCovid-PD-CHEBI

Id Subject Object Predicate Lexical cue chebi_id
T1 2706-2709 Chemical denotes Lin http://purl.obolibrary.org/obo/CHEBI_32386
T2 3037-3040 Chemical denotes Lin http://purl.obolibrary.org/obo/CHEBI_32386
T3 3272-3275 Chemical denotes GDP http://purl.obolibrary.org/obo/CHEBI_17552|http://purl.obolibrary.org/obo/CHEBI_58189
T5 6735-6737 Chemical denotes SI http://purl.obolibrary.org/obo/CHEBI_90326
T6 6740-6742 Chemical denotes SE http://purl.obolibrary.org/obo/CHEBI_74813
T7 6767-6769 Chemical denotes SI http://purl.obolibrary.org/obo/CHEBI_90326
T8 6772-6774 Chemical denotes SE http://purl.obolibrary.org/obo/CHEBI_74813
T9 6785-6787 Chemical denotes B2 http://purl.obolibrary.org/obo/CHEBI_51707
T10 9890-9892 Chemical denotes AE http://purl.obolibrary.org/obo/CHEBI_61565
T11 10768-10770 Chemical denotes AE http://purl.obolibrary.org/obo/CHEBI_61565
T12 12467-12469 Chemical denotes AE http://purl.obolibrary.org/obo/CHEBI_61565
T13 13588-13590 Chemical denotes AE http://purl.obolibrary.org/obo/CHEBI_61565
T14 16099-16102 Chemical denotes DDE http://purl.obolibrary.org/obo/CHEBI_16598
T15 16878-16881 Chemical denotes DDE http://purl.obolibrary.org/obo/CHEBI_16598
T16 18067-18070 Chemical denotes DDE http://purl.obolibrary.org/obo/CHEBI_16598
T17 20346-20349 Chemical denotes DDE http://purl.obolibrary.org/obo/CHEBI_16598
T18 21280-21283 Chemical denotes DDE http://purl.obolibrary.org/obo/CHEBI_16598
T19 24829-24832 Chemical denotes DDE http://purl.obolibrary.org/obo/CHEBI_16598
T20 24997-25000 Chemical denotes DDE http://purl.obolibrary.org/obo/CHEBI_16598

LitCovid-PD-GO-BP

Id Subject Object Predicate Lexical cue
T1 2784-2795 http://purl.obolibrary.org/obo/GO_0007610 denotes behavioural

LitCovid-sentences

Id Subject Object Predicate Lexical cue
T1 0-151 Sentence denotes Evaluation and prediction of the COVID-19 variations at different input population and quarantine strategies, a case study in Guangdong province, China
T2 153-163 Sentence denotes Highlights
T3 164-225 Sentence denotes • The input population and output population are considered.
T4 226-306 Sentence denotes • 108 scenarios are listed from the input population and quarantine strategies.
T5 307-353 Sentence denotes • The second outbreak of disease is obtained.
T6 355-363 Sentence denotes Abstract
T7 364-540 Sentence denotes In this study, an epidemic model was developed to simulate and predict the disease variations of Guangdong province which was focused on the period from Jan 27 to Feb 20, 2020.
T8 541-734 Sentence denotes To explore the impacts of the input population and quarantine strategies on the disease variations at different scenarios, four time points were assumed as Feb 6, Feb 16, Feb 24 and Mar 5 2020.
T9 735-835 Sentence denotes The major results suggest that our model can well capture the disease variations with high accuracy.
T10 836-976 Sentence denotes The simulated peak value of the confirmed cases is 1002 at Feb 10, 2020 which is mostly close to the reported number of 1007 at Feb 9, 2020.
T11 977-1052 Sentence denotes The disease will become extinction with peak value of 1397 at May 11, 2020.
T12 1053-1309 Sentence denotes Moreover, the increased numbers of the input population can mainly shorten the disease extinction days and the increased percentages of the exposed individuals of the input population increase the number of cumulative confirmed cases at a small percentage.
T13 1310-1486 Sentence denotes Increasing the input population and decreasing the quarantine strategy together around the time point of the peak value of the confirmed cases, may lead to the second outbreak.
T14 1488-1500 Sentence denotes Introduction
T15 1501-1965 Sentence denotes In the past more than fifty days, the Chinese government and all the people in China fought against the COVID-19 disease, and employed extremely and rigorously controlling measures to protect the people avoiding the infection of the COVID-19 virus, such as the lockdown of many cities in Hubei province (e.g. Wuhan city) and initiating a top-level emergency response to rein in the outbreak of the epidemic associated with COVID-19 in the other provinces of China.
T16 1966-2327 Sentence denotes With these strong and effective strategic policies, the number of the daily new confirmed COVID-19 cases was significantly decreased from the largest value of 3887 at Feb 4, 2020 to the value of 648 at Feb 22, 2020 from the National Health Commission of the People's Republic of China (http://www.nhc.gov.cn/)(excluding more than 140,000 cases at Feb 12, 2020).
T17 2328-3056 Sentence denotes Recently, more and more researchers have been paid large attention on the COVID-19 variations in China, such as detecting the clinical characteristics (Guan et al., 2020), estimating the spreading characteristics ([Wu et al., 2020], [Zhao et al., 2020a], [Zhao et al., 2020b]) and exploring the effects of the control strategies ([Chinazzi et al., 2020], [Huang et al., 2020], [Lin et al., 2020], [Tang et al., 2020a], [Tang et al., 2020b]).The individual behavioural reaction and governmental actions played a key role in controlling the spread of the COVID-19 outbreak for the public health in the world, e.g. holiday extension, travel restriction, hospitalisation and quarantine ([Chinazzi et al., 2020], [Lin et al., 2020]).
T18 3057-3212 Sentence denotes Until now, there are only few researches about the effects of different population migration and quarantine strategies on the COVID-19 variations in China.
T19 3213-3311 Sentence denotes Guangdong province has the largest gross domestic product (GDP) than the other provinces in China.
T20 3312-3577 Sentence denotes Moreover, according to the present COVID-19 variations and control strategies, the Guangdong province adjusted the emergency response level of epidemic prevention and control from the first level response to the second level at Feb 24, 2020 (http://www.gd.gov.cn/).
T21 3578-3658 Sentence denotes More and more workers will come back to Guangdong province from other provinces.
T22 3659-3817 Sentence denotes Thereby, we choose Guangdong province as a case study to explore the effects of the population migration and quarantine strategies on the COVID-19 variations.
T23 3818-3952 Sentence denotes Based on the present rigorous and extreme control measures in Hubei province, input population from Hubei province are not considered.
T24 3953-4220 Sentence denotes In this study, we focus on the input population and quarantine strategies influencing on the disease variations, including the peak values of the cumulative confirmed cases, the daily new increased confirmed cases and the confirmed cases, and the corresponding times.
T25 4221-4266 Sentence denotes The organization of this paper is as follows.
T26 4267-4359 Sentence denotes In the next section, the establishment of SEIRQ model, data and methodology are illustrated.
T27 4360-4495 Sentence denotes In “Result” section, the input population and quarantine strategies at different scenarios are investigated which are our main results.
T28 4496-4551 Sentence denotes A brief discussion is provided in “Discussion” section.
T29 4553-4586 Sentence denotes SEIRQ model, data and methodology
T30 4588-4599 Sentence denotes SEIRQ model
T31 4600-5002 Sentence denotes In this study, according to the characteristics of the COVID-19 transmission, the whole population at time t is divided into seven compartments which include the susceptible individuals S(t), exposed individuals E(t), infectious individuals I(t), removed individuals R(t), quarantined susceptible individuals S q(t), quarantined exposed individuals E q(t) and quarantined infectious individuals I q(t).
T32 5003-5153 Sentence denotes The COVID-19 disease is transmitted from I(t) to S(t) with the incidence rate of β, and from E(t) to S(t) with the incidence rate of σβ, respectively.
T33 5154-5233 Sentence denotes The susceptible individuals S(t) is partly quarantined with the rate of q 1(t).
T34 5234-5445 Sentence denotes We assume that exposed individuals E(t) and quarantined exposed individuals E q(t) are transmitted to infectious individuals I(t) and quarantined infectious individuals I q(t) with the same transition rate of ν.
T35 5446-5547 Sentence denotes The quarantined rates of exposed individuals E(t) and infectious individuals I(t) are q 1(t) and q 3.
T36 5548-5852 Sentence denotes The death rate induced by the COVID-19 disease is α in both infectious individuals I(t) and quarantined infectious individuals I q(t) which removed to the removed individuals R(t) . γ(t) is the recovery rate of quarantined infected individuals I q(t) which is the mainly part of removed individuals R(t).
T37 5853-5978 Sentence denotes Moreover, based on the population migration, we assume that the input population and output population have constant numbers.
T38 5979-6329 Sentence denotes Susceptible individuals S(t), exposed individuals E(t) and infectious individuals I(t) have their respective input individuals of p 1(t)A(t), p 2(t)A(t) and p 3(t)A(t), and the parameters p i(t), i  = 1, 2, 3 are the rates of susceptible individuals, exposed individuals, infectious individuals in the total input number of A(t) from other provinces.
T39 6330-6465 Sentence denotes The output population are B 1, B 2 and B 3 for the susceptible individuals S(t), exposed individuals E(t), infectious individuals I(t).
T40 6466-6563 Sentence denotes The COVID-19 disease transmission and population migration are demonstrated by Fig. 1 in details.
T41 6564-6616 Sentence denotes Figure 1 Flowchart of COVID-19 SEIRQ epidemic model.
T42 6617-6948 Sentence denotes The SEIRQ epidemic model can be described by the following system of ordinary differential equations(1) S′=p1(t)A(t)−βSI−σβSE−q1(t)S−B1,E′=p2(t)A(t)+βSI+σβSE−νE−q2(t)E−B2,I′=p3(t)A(t)+νE−q3I−αI−B3,R′=γ(t)Iq+αI+αIq,Sq′=q1(t)SEq′=q2(t)E−νEqIq′=q3I+νEq−γ(t)Iq−αIqwhere the prime (′) denotes the differentiation with respect to time t.
T43 6949-7046 Sentence denotes Here, parameters 0 <  β, ν, γ(t), α  < 1 and the quarantined rates 0 ≤  q 1(t), q 2(t), q 3  ≤ 1.
T44 7047-7166 Sentence denotes All the initial values of different individual groups: S(0), E(0), I(0), R(0), S q(0), E q(0), I q(0) are non-negative.
T45 7168-7172 Sentence denotes Data
T46 7173-7529 Sentence denotes In this study, the COVID-19 cases of Guangdong province, Hubei province and mainland China are obtained from the Health Commission of Guangdong Province (http://wsjkw.gd.gov.cn/), the Health Commission of Hubei Province (http://wjw.hubei.gov.cn/), and the National Health Commission of the People's Republic of China (http://www.nhc.gov.cn/), respectively.
T47 7530-7749 Sentence denotes The data are from Jan 20, 2020 to present which include the number of the cumulative confirmed cases, the number of the confirmed cases, the number of the cumulative cured cases and the number of cumulative death cases.
T48 7750-7941 Sentence denotes The numbers of the total population of Guangdong Province, Hubei Province and mainland China are employed at the end of 2018 from the National Bureau of Statistics (http://www.stats.gov.cn/).
T49 7942-8129 Sentence denotes The numbers of the input and output population from Hubei province and the other provinces of mainland China to Guangdong province are from the Baidu migration (http://qianxi.baidu.com/).
T50 8130-8305 Sentence denotes These data are covering the period of Jan 1, 2020 to Feb 20, 2020 which are employed to display the population migration variations from other provinces to Guangdong province.
T51 8306-8588 Sentence denotes Because the input population from Hubei province to Guangdong province is significantly decreased from 26.86% of the total input population at Jan 26, 2020 to the 6.84% at Jan 27, 2020, for the Guangdong province, the starting date of the COVID-19 disease data is from Jan 27, 2020.
T52 8590-8601 Sentence denotes Methodology
T53 8602-8709 Sentence denotes In this study, for the COVID-19 variations, we focus on the cumulative confirmed cases and confirmed cases.
T54 8710-8836 Sentence denotes The largest value of the cumulative confirmed cases means the total number of the population infected by the COVID-19 disease.
T55 8837-8942 Sentence denotes The disease extinction time is defined as the day with no confirmed case which is the time of I q(t) = 0.
T56 8943-9052 Sentence denotes The initial values and parameters can be obtained from the Text methodology of the supplementary information.
T57 9053-9386 Sentence denotes The baseline parameters noted as (A, B, p 1, p 2, p 3, q 1, q 2, q 3, α, β, ν, σ, γ) = (A* , B  * , p 1  * , p 2  * , p 3  * , q 1  * , q 2  * , q 3  *, α* , β  * , ν  *, σ  * , γ  *) is obtained from the simulation result of the cumulative confirmed cases, the daily new confirmed cases, the confirmed cases and the recovered cases.
T58 9387-9782 Sentence denotes To compare with the baseline results, three aspects from the perspectives of the input population and quarantine strategies on the COVID-19 variations are analyzed: (1) aspect 1, effects of the input population at different scenarios; (2) aspect 2, effects of quarantine rates at different scenarios and (3) aspect 3, effects of both input population and quarantine rates at different scenarios.
T59 9783-10142 Sentence denotes To evaluate the accuracy of our model, five statistical indices are applied, including the absolute error (AE), relative error (RE), mean absolute percentage error (MAPE), determinant coefficient R  *  2 which is the square of correlation coefficient R* and distance between indices of simulation and observation (DISO) ([Hu et al., 2016], [Hu et al., 2019]).
T60 10143-10222 Sentence denotes The details are displayed in Text methodology of the supplementary information.
T61 10224-10230 Sentence denotes Result
T62 10232-10292 Sentence denotes Simulation and prediction of the COVID-19 disease variations
T63 10293-10515 Sentence denotes In this section, the variations of the COVID-19 in Guangdong province are simulated and predicted based on our SEIRQ model only considering the input population from the other provinces of China (excluding Hubei province).
T64 10516-10575 Sentence denotes The simulated period are from Jan 27, 2019 to Feb 19, 2020.
T65 10576-10678 Sentence denotes The parameter values and the initial values of our simulation and prediction are provided in Table 1 .
T66 10679-10834 Sentence denotes The performance is evaluated by the data from Feb 20, 2020 to Feb 23, 2020, and R  *  2, AE, RE, RMSE, MPAE and DISO are employed to quantify the accuracy.
T67 10835-10910 Sentence denotes The simulation and prediction results are displayed in Table 2 and Fig. 2 .
T68 10911-10974 Sentence denotes Table 1 Parameter estimates for COVID-19 in Guangdong province.
T69 10975-11018 Sentence denotes Parameter Definitions Esimated value Source
T70 11019-11070 Sentence denotes β Transmission incidence rate 2.45 × 10−8 Estimated
T71 11071-11155 Sentence denotes σ The fraction of transmission incidence rate for exposed individuals 0.63 Estimated
T72 11156-11202 Sentence denotes α Disease-induced death rate 0.00375 Estimated
T73 11203-11316 Sentence denotes ν Transmission rate of exposed individuals to the infected class 0.183 [Zhao et al., 2020a], [Zhao et al., 2020b]
T74 11317-11375 Sentence denotes γ(t) Recovery rate 0.008+0.19(1+e5.0126−0.1846t) Estimated
T75 11376-11440 Sentence denotes q1(t) Quarantined rate of susceptible individuals 0.28 Estimated
T76 11441-11501 Sentence denotes q2(t) Quarantined rate of exposed individuals 0.76 Estimated
T77 11502-11560 Sentence denotes q3 Quarantined rate of infected individuals 0.89 Estimated
T78 11561-11589 Sentence denotes A(t) Input number 86926 data
T79 11590-11617 Sentence denotes B1 Output number 21356 data
T80 11618-11695 Sentence denotes p1 The fraction of input population into susceptible class 0.9999927 Computed
T81 11696-11769 Sentence denotes p2 The fraction of input population into exposed class 0.0000073 Computed
T82 11770-11835 Sentence denotes p3 The fraction of input population into infected class 0 Assumed
T83 11836-11884 Sentence denotes Initial values Definitions Esimated value Source
T84 11885-11928 Sentence denotes N(0) Initial total population 113460000 GSY
T85 11929-11984 Sentence denotes S(0) Initial susceptible population 113346174 Estimated
T86 11985-12029 Sentence denotes E(0) Initial exposed population 31 Estimated
T87 12030-12075 Sentence denotes I(0) Initial infected population 19 Estimated
T88 12076-12141 Sentence denotes Sq(0) Initial quarantined susceptible population 113460 Estimated
T89 12142-12195 Sentence denotes Eq(0) Initial quarantined exposed population 128 data
T90 12196-12250 Sentence denotes Iq(0) Initial quarantined infected population 184 data
T91 12251-12290 Sentence denotes R(0 Initial recovered population 4 data
T92 12291-12301 Sentence denotes Note: GSY:
T93 12302-12339 Sentence denotes Guangdong Statistical Yearbook, 2019.
T94 12340-12422 Sentence denotes Table 2 Evaluation results of the simulation and prediction in Guangdong province.
T95 12423-12460 Sentence denotes Different cases Simulation Prediction
T96 12461-12503 Sentence denotes R * 2 AE MAPE (%) DISO 20/2 21/2 22/2 23/2
T97 12504-12531 Sentence denotes RE (%) RE (%) RE (%) RE (%)
T98 12532-12605 Sentence denotes Cumulative confirmed cases 0.9973 −5.33 2.54 0.06 −0.38 −0.45 −0.37 −0.37
T99 12606-12664 Sentence denotes Confirmed cases 0.9898 −2.63 3.86 0.11 2.68 1.51 0.81 7.07
T100 12665-12729 Sentence denotes Recovered cases 0.9934 −3.38 43.32 0.17 −2.09 −1.38 −3.75 −10.41
T101 12730-12914 Sentence denotes Figure 2 Simulation and prediction of the COVID-19 in Guangdong province. (A) cumulative confirmed cases; (B) daily new confirmed cases and (C) difference of increased confirmed cases.
T102 12915-13233 Sentence denotes The initial values and parameters are S(0) = 113346174, E(0) = 31, I(0) = 19, R(0) = 4, Sq(0) = 113460, Eq(0) = 128, Iq(0) = 184, A = 86926, B = 21356, p1 = 0.9999927, p2 = 0.0000073, p3 = 0, q1 = 0.28, q2 = 0.76, q3 = 0.89, α = 0.00375, β = 2.45 × 10−8, ν = 0.183, σ = 0.63, γ(t) = 0.008 + 0.19/(1 + e5.0126−0.1846t).
T103 13234-13360 Sentence denotes Our model has the ability to simulate and to predict the COVID-19 variations with the very high accuracy (Table 2 and Fig. 2).
T104 13361-13542 Sentence denotes Particularly, the determinant coefficients R* of the cumulative confirmed cases, confirmed cases and recovered cases are highly to 0.9973, 0.9898 and 0.9934, respectively (Table 2).
T105 13543-13686 Sentence denotes Very small estimations are obtained with the AE values of −5.33, −2.63 and −3.38 for the cumulative cases, confirmed cases and recovered cases.
T106 13687-13870 Sentence denotes The comprehensive accuracies of our model are quantitatively measured by the DISO with the values of 0.06, 0.11 and 0.17 for the cumulative cases, confirmed cases and recovered cases.
T107 13871-14174 Sentence denotes For the validation at Feb 20, Feb 21, Feb 22 and Feb 23, 2020, the very small RE values of the cumulative confirmed cases, confirmed cases and recovered cases indicate that our model also has very high accuracies and it can be employed to predict the future variations of the COVID-19 disease (Table 2).
T108 14175-14379 Sentence denotes Moreover, the largest number of cumulative confirmed cases is 1397 at May 7, 2020 which indicates that the COVID-19 disease will become extinction after 102 days in Guangdong province (Fig. 2A, STable 1).
T109 14380-14518 Sentence denotes The peak value time of daily new confirmed cases is Feb 1, 2020 which is highly agrement with the reported time at Jan 31, 2020 (Fig. 2B).
T110 14519-14720 Sentence denotes For the confirmed cases, the peak value and the corresponding time are both obtained by our model with the simulated values of 1002 at Feb 10, 2020 and reported values of 1007 at Feb 9, 2020 (Fig. 2C).
T111 14721-14862 Sentence denotes The number of the recovered cases will reach about 1400 which is consist with the future changes of the cumulative confirmed cases (Fig. 2D).
T112 14863-15049 Sentence denotes In order to further explore the forecasting accuracy of our model, we have been compared the forecasting result with the observed data prolonged 11 days from Feb 24, 2020 to Mar 4, 2020.
T113 15050-15158 Sentence denotes The absolute values of RE (relative error) of the cumulative confirmed cases are smaller than 1% (Table 3 ).
T114 15159-15326 Sentence denotes The corresponding figures also display that our model can capture the temporal variations in a relative longer period (see SFigure 1 in the supplementary information).
T115 15327-15394 Sentence denotes Table 3 Evaluation results of the prediction in Guangdong province.
T116 15395-15447 Sentence denotes RE (%) 24/2 25/2 26/2 27/2 28/2 29/2 1/3 2/3 3/3 4/3
T117 15448-15526 Sentence denotes Cumulative confirmed cases −2.30 −0.41 0.12 0.20 0.25 0.37 0.40 0.49 0.58 0.66
T118 15527-15612 Sentence denotes Confirmed cases −14.98 −19.21 −24.22 −26.74 −27.64 −30.81 −36.19 −35.94 −33.52 −34.68
T119 15613-15684 Sentence denotes Recovered cases 9.60 11.35 13.09 12.57 10.88 10.67 11.35 9.35 7.08 6.31
T120 15686-15736 Sentence denotes Effects of input population at different scenarios
T121 15737-16011 Sentence denotes The input population variations include the percentage changes p 2 of the exposed individuals and the number changes A of the input population which impact the disease on the peak value of the cumulative confirmed cases and the disease extinction time (Figure 3, Figure 4 ).
T122 16012-16403 Sentence denotes For the first time point t 1  = 10 (i.e. Feb 6, 2020), the days of disease extinction (DDE) are shortened to 78 days (i.e. Apr 13, 2020) and 69 days (i.e. Apr 4, 2020) at Sce 1: (p 2, A) = (p 2  * , 1.5A  *) and Sce 2: (p 2, A) = (p 2  * , 2A  *), and the maximum values of the cumulative confirmed cases (MVCCC) have the numbers of 1396 and 1397 [Fig. 3A, Supplementary table 1 (STable 1)].
T123 16404-16579 Sentence denotes For the confirmed cases, the peak values are nearly close to the baseline value with the number of 1003, and the corresponding times are same as the baseline value (STable 1).
T124 16580-16802 Sentence denotes Moreover, the confirmed cases of Sce 1 and Sce 2 have the same variations as the baseline result with their early disease extinction that are consist with the variations of the cumulative confirmed cases (Fig. 2A and 3 A).
T125 16803-17095 Sentence denotes For Sce 4, Sce 5, Sce 7 and Sce 8, compared with the baseline results, the DDE of these scenarios are 81 days (i.e. Apr 16, 2020), 59 days (i.e. Mar 25, 2020), 83 days (i.e. Apr 18, 2020) and 73 days (i.e. Apr 8, 2020), respectively which indicate the early extinction of COVID-19 (STable 1).
T126 17096-17201 Sentence denotes The MVCCC of the four scenarios are larger than the baseline result with the largest value (1448) in Sce:
T127 17202-17224 Sentence denotes 8 (Fig. 3A, STable 1).
T128 17225-17331 Sentence denotes For the confirmed cases, these scenarios are similar as these of the baseline results (Fig. 4A, STable 1).
T129 17332-17580 Sentence denotes Figure 3 Scenarios results of input population impacting on the cumuletive confirmed COVID-19 cases at four time points: (A) t1 = 10, (B) t1 = 20, (C) t1 = 28 and (D) t1 = 38 corresponding to Feb 6, 2020, Feb 16, 2020, Feb 24, 2020 and Mar 5, 2020.
T130 17581-17818 Sentence denotes Figure 4 Scenarios results of input population impacting on the confirmed COVID-19 cases at four time points: (A) t1 = 10, (B) t1 = 20, (C) t1 = 28 and (D) t1 = 38 corresponding to Feb 6, 2020, Feb 16, 2020, Feb 24, 2020 and Mar 5, 2020.
T131 17819-18162 Sentence denotes For Sce 3: (p 2, A) = (1.5p 2  * , A  *) and Sce 6: (p 2, A) = (2p 2  * , A  *), the increased percentage of the exposed individuals only impacted the number of the cumulative confirmed cases with the values of 1422 and 1447, and the corresponding DDE have only small changes with 105 days for Sce 3 and 107 days for Sce 6 (Fig. 3A, STable 1).
T132 18163-18311 Sentence denotes For the confirmed cases, they have the very similar variations as the baseline result in the peak value and the peak value time (Fig. 4A, STable 1).
T133 18312-18459 Sentence denotes For the other three time points t 1  = 20, t 1  = 28 and t 1  = 38, the differences of the scenarios results are similar as the these of t 1  = 10.
T134 18460-18734 Sentence denotes Moreover, for each scenario, the changes in the input population have the nearly same impacts on the disease variations among the four time points which display that the same input population strategies at different time points have no significant difference on the disease.
T135 18735-19031 Sentence denotes From the above analysis, it can be concluded that the increased numbers of the input population can mainly shorten the disease extinction days and the increased percentages of the exposed individuals of the input population increase the number of cumulative confirmed cases at a small percentage.
T136 19032-19185 Sentence denotes Both the increased input population and the increased exposed individuals have no impacts on the peak values and peak value times of the confirmed cases.
T137 19187-19237 Sentence denotes Effects of quarantine rates at different scenarios
T138 19238-19368 Sentence denotes In this section, the effects of quarantine rates at six scenarios on the COVID-19 variations are displayed in Figure 5, Figure 6 .
T139 19369-19650 Sentence denotes For the first time point t 1  = 10, Feb 6, 2020, Sce 1 (q 1, q 2) = (0q 1  * , 0q 2  *) has significantly negative impacts on the COVID-19 variations with the disease outbreak again which suggest the very high risks appear at the quarantine strategy of Sce 1 (Figure 5, Figure 6A).
T140 19651-19815 Sentence denotes Specifically, the confirmed cases reaches its first peak value as the baseline result at Feb 10, 2020, and then the number is decreased close to 97 at Mar 14, 2020.
T141 19816-19942 Sentence denotes A sharp increase is detected to the second peak value of the confirmed cases with the number of 1016704 at 165 days (Fig. 6A).
T142 19943-20059 Sentence denotes The disease will become extinction after 361 days with the MVCCC dramatically reaching to more than 9 million (Figs.
T143 20060-20077 Sentence denotes 5A and STable 2).
T144 20078-20341 Sentence denotes Sce 2: (q 1, q 2) = (0q 1  * , 0.5q 2  *) and Sce 3: (q 1, q 2) = (0q 1  * , q 2  *) have the similar impacts on the disease variations with the largest cumulative confirmed values of 1444 at 110 days (i.e. May 15, 2020), and 1416 at 105 days (i.e. May 10, 2020).
T145 20342-20545 Sentence denotes The DDE and MVCCC of Sce 4: (q 1, q 2) = (0.5q 1  * , 0.5q 2  *), Sce 5: (q 1, q 2) = (0.5q 1  * , q 2  *) and Sce 6: (q 1, q 2) = (q 1  * , 0.5q 2  *) are agreement with the baseline results (STable 2).
T146 20546-20681 Sentence denotes These three scenarios have very weak influences on the confirmed case variations compared with the baseline result (Fig. 6A, STable 2).
T147 20682-20930 Sentence denotes Figure 5 Scenarios results of quarantine rates impacting on the cumuletive confirmed COVID-19 cases at four time points: (A) t1 = 10, (B) t1 = 20, (C) t1 = 28 and (D) t1 = 38 corresponding to Feb 6, 2020, Feb 16, 2020, Feb 24, 2020 and Mar 5, 2020.
T148 20931-21168 Sentence denotes Figure 6 Scenarios results of quarantine rates impacting on the confirmed COVID-19 cases at four time points: (A) t1 = 10, (B) t1 = 20, (C) t1 = 28 and (D) t1 = 38 corresponding to Feb 6, 2020, Feb 16, 2020, Feb 24, 2020 and Mar 5, 2020.
T149 21169-21430 Sentence denotes For the other three time points, Sce 1: (q 1, q 2) = (0q 1  * , 0q 2  *) increased the MVCCC and prolonged the DDE with the values of 1430 at 123 days (i.e. May 28, 2020), 1416 at 115 days (i.e. May 20, 2020) and 1409 at 112 days (i.e. May 17, 2020) (STable 2).
T150 21431-21589 Sentence denotes The disease variations of the other scenarios are agreement with the baseline results which indicates the weak impacts of these scenarios (Fig. 5A, STable 2).
T151 21590-21882 Sentence denotes Moreover, we also explored that the second outbreak of the disease appears when both the values of q 1 and q 2 are nearly close to zero, such as (q 1, q 2) = (0.01q 1  * , 0.01q 2  *), (0q 1  * , 0.05q 2  *) at t 1  = 10, and (q 1, q 2) = (0q 1  * , 0q 2  *) at t 1  = 11 (Fig. 7 , STable 3).
T152 21883-22092 Sentence denotes This suggests that no quarantine or very weak quarantine on the susceptible individuals and exposed individuals before the days of the peak values of the confirmed cases may lead to the disease outbreak again.
T153 22093-22365 Sentence denotes Figure 7 Cumulative confirmed COVID-19 cases (A) and confirmed COVID-19 cases (B) at the scenarios of aspect 2 with (q1, q2) = (0.01q1 * , 0.01q2 *), (0q1 * , 0.05q2 *) at t1 = 10, and (q1, q2) = (0q1 * , 0q2 *) at t1 = 11, and the other parameters as the baseline values.
T154 22367-22443 Sentence denotes Effects of both input population and quarantine rates at different scenarios
T155 22444-22577 Sentence denotes The impact results of both the input population and quarantine rates on the COVID-19 disease are displayed in Fig. 8, 9 and STable 3.
T156 22578-22832 Sentence denotes According to the results in “Effects of input population at different scenarios” and “Effects of quarantine rates at different scenarios” sections, the second outbreak of the disease are obtained in the scenarios with no or very weak quarantine strategy.
T157 22833-22849 Sentence denotes Therefore, Figs.
T158 22850-23005 Sentence denotes 8 and 9 only provide the COVID-19 disease variations of the scenarios with second outbreak, and the disease variations in other scenarios are not provided.
T159 23006-23057 Sentence denotes STable 4 provides the results of all the scenarios.
T160 23058-23332 Sentence denotes Figure 8 Scenarios results of both input population and quarantine rates impacting on the cumuletive confirmed COVID-19 cases at four time points: (A) t1 = 10, (B) t1 = 20, (C) t1 = 28 and (D) t1 = 38 corresponding to Feb 6, 2020, Feb 16, 2020, Feb 24, 2020 and Mar 5, 2020.
T161 23333-23608 Sentence denotes Figure 9 Scenarios results of both input population and quarantine rates impacting on the cumuletive confirmed COVID-19 cases at four time points: (A) t1 = 10, (B) t1 = 20, (C) t1 = 28 and (D) t1 = 38 corresponding to Feb 6, 2020, Feb 16, 2020, Feb 24, 2020 and Mar 5,  2020.
T162 23609-24001 Sentence denotes For time point t 1  = 10, Sce 1: (p 2, A, q 1, q 2) = (1.5p 2  * , 1.5A  * , 0q 1  * , 0q 2  *), Sce 2: (p 2, A, q 1, q 2) = (1.5p 2  * , 2A  * , 0q 1  * , 0q 2  *), Sce 7: (p 2, A, q 1, q 2) = (2p 2  * , 1.5A  * , 0q 1  * , 0q 2  *) and Sce 8: (p 2, A, q 1, q 2) = (2p 2  * , 2A  * , 0q 1  * , 0q 2  *) have the MVCCC larger than 10 million at 328, 313, 327 and 312 days (Fig. 8A, STable 3).
T163 24002-24307 Sentence denotes In fact, they have the two outbreaks of the disease with the confirmed cases having the first peak value as the baseline result at Feb 10, 2020 and the second peak values larger than 1 million at 142 days, 132 days, 141 days and 130 days for Sce1, Sce 2, Sce 7 and Sce 8, respectively (Fig. 9A, STable 3).
T164 24308-24435 Sentence denotes The magnified figure in the period of Jan 27, 2020-Apr 26, 2020 clearly displays the second outbreak of this disease (Fig. 9A).
T165 24436-24617 Sentence denotes Moreover, the weak changes of the four scenarios in the quarantine rates or around the time point t 1  = 10, the second outbreak also resulted in the second outbreak of the disease.
T166 24618-24913 Sentence denotes If the control measures employed as the four scenarios after the other three time points t 1  = 20, t 1  = 28, and t 1  = 38, the MVCCC are rapidly decreased with still larger than the baseline results, and the DDE are prolonged except the Sce 2 and Sce 8 of t 1  = 28, and t 1  = 38 (STable 4).
T167 24914-24938 Sentence denotes For the other scenarios:
T168 24939-25105 Sentence denotes Sce 3-Sce 6 and Sce 9-Sce 12 of the four time points, the DDE become smaller than the baseline result due to the larger input population and more exposed individuals.
T169 25106-25261 Sentence denotes Moreover, the weaker quarantine rates together with the more input population resulted in the more infected individuals and increased the MVCCC (STable 4).
T170 25263-25273 Sentence denotes Discussion
T171 25274-25456 Sentence denotes Since the COVID-19 disease reported in Wuhan city, Hubei province of China, the Chinese government and all the people have been fighting against the disease for more than two months.
T172 25457-25666 Sentence denotes Now, the daily new confirmed cases have been continuously decreasing, and the latest value is 427 at Feb 28, 2020 from the National Health Commission of the People's Republic of China (http://www.nhc.gov.cn/).
T173 25667-25896 Sentence denotes According to the present COVID-19 disease situation, some provinces have been adjusted the emergency response level of epidemic prevention and control from the first level response to the second level, such as Guangdong province.
T174 25897-25978 Sentence denotes More and more workers are coming back to Guangdong province from other provinces.
T175 25979-26221 Sentence denotes To address the effects of the input population on the disease variations, taking Guangdong province as a case study, the impacts of the input population and quarantine strategies are explored using a dynamical epidemic model at three aspects.
T176 26222-26476 Sentence denotes They include aspect 1: effects of the input population at different scenarios; aspect 2: effects of quarantine rates at different scenarios and the last aspect (i.e. aspect 3): effects of both input population and quarantine rates at different scenarios.
T177 26477-26665 Sentence denotes For the population flow, recent study ([Tang et al., 2020a], [Tang et al., 2020b]) considered the data from the Baidu migration website in a stochastic discrete transmission dynamic model.
T178 26666-26844 Sentence denotes Both our study and [Tang et al., 2020a], [Tang et al., 2020b] obtained the risk of the secondary outbreak when the population flow are changed at a serious input population flow.
T179 26845-27116 Sentence denotes In [Tang et al., 2020a], [Tang et al., 2020b], with more data from the Health Commission of Shananxi Province, they estimated the daily new increased confirmed cases, and the daily new increased infectious individuals from the population flow by the Poisson distribution.
T180 27117-27284 Sentence denotes In our study, constrained by the data policy of the Health Commission of Guangdong Province, the input population is defined as the deterministic and continuous input.
T181 27285-27601 Sentence denotes Moreover, the ratio of the exposed individuals accounting for the input population is defined as the percentages of the exposed individuals in the total population of China excluding Guangdong and Hubei provinces which is derived from the daily new increased confirmed cases according to the 3–7 days latent periods.
T182 27602-27804 Sentence denotes In the development of the COVID-19 model, [Tang et al., 2020a], [Tang et al., 2020b] considered the quarantined susceptible individuals returned back to susceptible individuals after 14 days quarantine.
T183 27805-27898 Sentence denotes While this condition is not included in our study the major reasons are displayed as follows.
T184 27899-28047 Sentence denotes Under the present quarantine strategies in China, the susceptible individuals are quarantined in the forms of home quarantine, community quarantine.
T185 28048-28447 Sentence denotes Although the quarantined susceptible individuals can be returned to susceptible individuals after 14 days, they will certainly employ very strict other controlling strategies against the COVID-19 virus, such as wearing the medical masks and washing their hands frequently, and which result in only very small part of the quarantined susceptible individuals back to the truth susceptible individuals.
T186 28448-28594 Sentence denotes For the simulation and prediction abilities of our model, it displayed that our model can well capture the COVID-19 variations with high accuracy.
T187 28595-28700 Sentence denotes In general, it is very hard to capture the disease variations with high accuracy by the dynamical models.
T188 28701-28813 Sentence denotes We have been compared our forecasting with the observed data prolonged 11 days from Feb 24, 2020 to Mar 4, 2020.
T189 28814-28921 Sentence denotes The absolute values of RE (relative error) of the cumulative confirmed cases are smaller than 1% (Table 2).
T190 28922-29089 Sentence denotes The corresponding figures also display that our model can capture the temporal variations in a relative longer period (see SFigure 1 in the supplementary information).
T191 29090-29284 Sentence denotes The weaker forecasting capabilities from Feb 24, 2020 to Mar 4, 2020 than these from Feb 20, 2020 to Feb 23, 2020 are resulted by the parameter estimation period of Jan 19, 2020 to Feb 19, 2020.
T192 29285-29474 Sentence denotes At the same time, it inspired that if we want to obtain a high accuracy in a relative longer period the dataset used to estimate the parameters should be changed or prolonged with the time.
T193 29475-29747 Sentence denotes Our result indicated that the increased numbers of the input population can mainly shorten the disease extinction days and the increased percentages of the exposed individuals of the input population increase the number of cumulative confirmed cases at a small percentage.
T194 29748-29901 Sentence denotes Both the increased input population and the increased exposed individuals have no impacts on the peak values and peak value times of the confirmed cases.
T195 29902-30121 Sentence denotes For the impacts of aspect 2, no quarantine or very weak quarantine on the susceptible individuals and exposed individuals before the days of the peak values of the confirmed cases may lead to the disease outbreak again.
T196 30122-30205 Sentence denotes This proves the significant role of the quarantine strategy on the disease control.
T197 30206-30415 Sentence denotes If we increase the input population and decrease the quarantine strategy together around the time point of the peak value of the confirmed cases, there will appear second outbreak of the disease exponentially.
T198 30416-30595 Sentence denotes Moreover, the weaker quarantine rates together with the more input population resulted in the more infected individuals and increased the number of the cumulative confirmed cases.
T199 30596-30704 Sentence denotes More information about our simulation and quarantine situation can be explored if more data can be obtained.
T200 30705-30930 Sentence denotes In this study, to address the quarantine situation in Guangdong province, 108 scenarios are listed from the input population and quarantine strategies which may include the present quarantine strategies in Guangdong province.
T201 30931-31107 Sentence denotes The other further analysis of the COVID-19 variations, such as the daily number of people under medical observation, will be explored when more new data are obtained in future.
T202 31108-31328 Sentence denotes Based the above analysis, we have the major conclusions as follows.(1) The COVID-19 disease variations can be simulated by our models with very high accuracy, including the cumulative confirmed cases and confirmed cases.
T203 31329-31511 Sentence denotes (2) Under the present daily input population and quarantine strategy, the COVID-19 disease will become extinction in May 11, 2020, with the cumulative confirmed cases number of 1397.
T204 31512-31738 Sentence denotes (3) In Guangdong province, the adjustment of the emergency response level of epidemic prevention and control from the first level response to the second level at Feb 24, 2020 is reasonable which is also predicted by our model.
T205 31739-31918 Sentence denotes (4) The disease will have a second outbreak risk when the input population is remarkably increased and the present quarantine strategy rapidly decreases to the values around zero.
T206 31920-31962 Sentence denotes Ethics approval and consent to participate
T207 31963-32076 Sentence denotes Because no individual patient's data was employed, the ethical approval or individual consent was not applicable.
T208 32078-32112 Sentence denotes Availability of data and materials
T209 32113-32145 Sentence denotes All data are publicly available.
T210 32147-32154 Sentence denotes Funding
T211 32155-32229 Sentence denotes This research was supported by National Natural Science Foundation of P.R.
T212 32230-32247 Sentence denotes China [11771373].
T213 32249-32259 Sentence denotes Disclaimer
T214 32260-32504 Sentence denotes The funding agencies had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; or decision to submit the manuscript for publication.
T215 32506-32527 Sentence denotes Conflict of interests
T216 32528-32671 Sentence denotes We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.
T217 32673-32695 Sentence denotes Authors’ contributions
T218 32696-32709 Sentence denotes Study design:
T219 32710-32783 Sentence denotes Zengyun Hu, Qianqian Cui, Junmei Han and Zhidong Teng; Conceptualization:
T220 32784-32826 Sentence denotes Zengyun Hu, Qianqian Cui; Data collection:
T221 32827-32882 Sentence denotes Junmei Han, Zengyun Hu and Qianqian Cui; Data analysis:
T222 32883-32923 Sentence denotes Zengyun Hu, Qianqian Cui; Visualization:
T223 32924-32958 Sentence denotes Qianqian Cui, Junmei Han; Writing:
T224 32959-32990 Sentence denotes Zengyun Hu; Review and editing:
T225 32991-33016 Sentence denotes Zhidong Teng, Zengyun Hu.
T226 33017-33053 Sentence denotes In the revised processes, Dr. Wei E.
T227 33054-33056 Sentence denotes I.
T228 33057-33199 Sentence denotes Sha from Zhejiang University provided important suggestions to address the quarantine strategy and improved the manuscript in English grammar.
T229 33200-33370 Sentence denotes Dr. Xia Wang from Shaanxi Normal University addressed the comments on the differences of population flow between our model and [Tang et al., 2020a], [Tang et al., 2020b].
T230 33372-33402 Sentence denotes Appendix A Supplementary data
T231 33403-33460 Sentence denotes The following are the supplementary data to this article:
T232 33462-33478 Sentence denotes Acknowledgements
T233 33479-33758 Sentence denotes The authors would like to thank Prof. Zhipeng Qiu from Nanjing University of Science and Technology, Prof. Tailei Zhang from Changan University, Dr. Jiao Huang from Huazhong University of Science and Technology and Mr Zhiming Jiang from University of Chinese Academy of Sciences.
T234 33759-33902 Sentence denotes Appendix A Supplementary data associated with this article can be found, in the online version, at https://doi.org/10.1016/j.ijid.2020.04.010.