> top > docs > PMC:7158772 > annotations

PMC:7158772 JSONTXT

Annnotations TAB JSON ListView MergeView

LitCovid-PubTator

Id Subject Object Predicate Lexical cue tao:has_database_id
2 0-11 Species denotes Coronavirus Tax:694448
3 37-52 Disease denotes Gaia's sickness MESH:D008881
10 311-317 Species denotes people Tax:9606
11 776-787 Species denotes coronavirus Tax:694448
12 146-155 Disease denotes pneumonia MESH:D011014
13 199-207 Disease denotes COVID-19 MESH:C000657245
14 290-298 Disease denotes infected MESH:D007239
15 708-713 Disease denotes Death MESH:D003643
17 964-972 Disease denotes COVID-19 MESH:C000657245
19 1444-1450 Chemical denotes carbon MESH:D002244
21 2423-2441 Disease denotes infective diseases MESH:D007239
31 2936-2941 Gene denotes chimp Gene:25898
32 2573-2584 Species denotes coronavirus Tax:694448
33 2595-2600 Species denotes human Tax:9606
34 2840-2845 Species denotes human Tax:9606
35 2872-2890 Disease denotes infective diseases MESH:D007239
36 2980-2987 Disease denotes malaria MESH:D008288
37 2992-3004 Disease denotes dengue fever MESH:D003715
38 3034-3047 Disease denotes deforestation
39 3122-3132 Disease denotes meningitis MESH:D008581
42 3382-3387 Species denotes human Tax:9606
43 3770-3778 Disease denotes COVID-19 MESH:C000657245
46 5061-5072 Species denotes coronavirus Tax:694448
47 5298-5306 Chemical denotes Nitrogen MESH:D009584
53 4917-4928 Species denotes coronavirus Tax:694448
54 4936-4942 Species denotes people Tax:9606
55 4147-4161 Chemical denotes carbon dioxide MESH:D002245
56 4204-4212 Chemical denotes Nitrogen MESH:D009584
57 4853-4856 Chemical denotes oil MESH:D009821
60 6569-6575 Chemical denotes carbon MESH:D002244
61 6234-6242 Disease denotes COVID-19 MESH:C000657245
65 7363-7369 Species denotes people Tax:9606
66 8356-8362 Species denotes stocks Tax:3724
67 8484-8492 Chemical denotes palm oil MESH:D000073878
69 8895-8900 Species denotes human Tax:9606
72 11792-11797 Chemical denotes water MESH:D014867
73 11740-11762 Disease denotes decrease deforestation MESH:D002303

LitCovid_Glycan-Motif-Structure

Id Subject Object Predicate Lexical cue
T1 5494-5498 https://glytoucan.org/Structures/Glycans/G56516VH denotes g/m3
T2 5494-5498 https://glytoucan.org/Structures/Glycans/G91237TK denotes g/m3

LitCovid-PD-FMA-UBERON

Id Subject Object Predicate Lexical cue fma_id
T1 722-725 Body_part denotes HIV http://purl.org/sig/ont/fma/fma278683
T2 2899-2902 Body_part denotes HIV http://purl.org/sig/ont/fma/fma278683
T3 3093-3098 Body_part denotes Colon http://purl.org/sig/ont/fma/fma14543
T4 7665-7669 Body_part denotes back http://purl.org/sig/ont/fma/fma25056
T5 8484-8488 Body_part denotes palm http://purl.org/sig/ont/fma/fma24920

LitCovid-PD-UBERON

Id Subject Object Predicate Lexical cue uberon_id
T1 870-875 Body_part denotes scale http://purl.obolibrary.org/obo/UBERON_0002542
T2 3093-3098 Body_part denotes Colon http://purl.obolibrary.org/obo/UBERON_0001155

LitCovid-PD-MONDO

Id Subject Object Predicate Lexical cue mondo_id
T1 146-155 Disease denotes pneumonia http://purl.obolibrary.org/obo/MONDO_0005249
T2 199-207 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T3 702-713 Disease denotes Black Death http://purl.obolibrary.org/obo/MONDO_0001112|http://purl.obolibrary.org/obo/MONDO_0019095
T5 964-972 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T6 2980-2987 Disease denotes malaria http://purl.obolibrary.org/obo/MONDO_0005136
T7 2992-3004 Disease denotes dengue fever http://purl.obolibrary.org/obo/MONDO_0005502
T8 3122-3132 Disease denotes meningitis http://purl.obolibrary.org/obo/MONDO_0004796|http://purl.obolibrary.org/obo/MONDO_0021108
T10 3770-3778 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T11 6234-6242 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096

LitCovid-PD-CLO

Id Subject Object Predicate Lexical cue
T1 24-25 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T2 286-289 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T3 448-453 http://purl.obolibrary.org/obo/NCBITaxon_10239 denotes virus
T4 625-633 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes humanity
T5 634-637 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T6 861-862 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T7 986-987 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T8 1381-1382 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T9 1413-1417 http://purl.obolibrary.org/obo/CLO_0001185 denotes 2018
T10 1507-1508 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T11 2135-2139 http://purl.obolibrary.org/obo/CLO_0001185 denotes 2018
T12 2160-2161 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T13 2528-2529 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T14 2595-2600 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T15 2601-2607 http://purl.obolibrary.org/obo/NCBITaxon_33208 denotes animal
T16 2734-2738 http://purl.obolibrary.org/obo/NCBITaxon_9397 denotes bats
T17 2758-2759 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T18 2790-2795 http://purl.obolibrary.org/obo/NCBITaxon_10239 denotes virus
T19 2829-2836 http://purl.obolibrary.org/obo/NCBITaxon_33208 denotes animals
T20 2840-2852 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human beings
T21 3093-3098 http://purl.obolibrary.org/obo/UBERON_0001155 denotes Colon
T22 3382-3387 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T23 3560-3561 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T24 3689-3690 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T25 3947-3955 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes humanity
T26 4022-4027 http://purl.obolibrary.org/obo/NCBITaxon_10239 denotes virus
T27 4044-4047 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T28 4358-4363 http://purl.obolibrary.org/obo/CLO_0001236 denotes 2 . A
T29 4480-4481 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T30 4671-4674 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T31 4742-4745 http://purl.obolibrary.org/obo/CLO_0001000 denotes 3-5
T32 4794-4795 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T33 4872-4875 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T34 5140-5141 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T35 5191-5192 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T36 5283-5284 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T37 5821-5824 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T38 6053-6054 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T39 6160-6162 http://purl.obolibrary.org/obo/PR_000010213 denotes mb
T40 6205-6206 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T41 6372-6373 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T42 6710-6711 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T43 6934-6935 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T44 7053-7059 http://purl.obolibrary.org/obo/CLO_0007225 denotes labels
T45 7079-7080 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T46 7423-7431 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes Humanity
T47 7463-7464 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T48 7586-7587 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T49 7911-7912 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T50 8004-8005 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T51 8081-8082 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T52 8214-8215 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T53 8276-8277 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T54 8313-8317 http://purl.obolibrary.org/obo/NCBITaxon_117565 denotes fish
T55 8623-8624 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T56 8634-8637 http://purl.obolibrary.org/obo/UBERON_0001013 denotes fat
T57 8818-8819 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T58 8895-8900 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T59 8901-8911 http://purl.obolibrary.org/obo/CLO_0001658 denotes activities
T60 9744-9752 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes humanity
T61 9753-9756 http://purl.obolibrary.org/obo/CLO_0051582 denotes has
T62 9956-9960 http://purl.obolibrary.org/obo/CLO_0001185 denotes 2018
T63 10029-10034 http://purl.obolibrary.org/obo/UBERON_0007688 denotes field
T64 11142-11143 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T65 11233-11238 http://purl.obolibrary.org/obo/UBERON_0007688 denotes field
T66 11955-11962 http://purl.obolibrary.org/obo/NCBITaxon_10239 denotes viruses
T67 11967-11975 http://purl.obolibrary.org/obo/NCBITaxon_2 denotes bacteria
T68 13361-13366 http://purl.obolibrary.org/obo/UBERON_0001456 denotes faces

LitCovid-PD-CHEBI

Id Subject Object Predicate Lexical cue chebi_id
T1 72-75 Chemical denotes Eve http://purl.obolibrary.org/obo/CHEBI_132237
T2 1444-1450 Chemical denotes carbon http://purl.obolibrary.org/obo/CHEBI_27594|http://purl.obolibrary.org/obo/CHEBI_33415
T4 4060-4074 Chemical denotes greenhouse gas http://purl.obolibrary.org/obo/CHEBI_76413
T5 4076-4079 Chemical denotes GHG http://purl.obolibrary.org/obo/CHEBI_76413
T6 4147-4161 Chemical denotes carbon dioxide http://purl.obolibrary.org/obo/CHEBI_16526
T7 4147-4153 Chemical denotes carbon http://purl.obolibrary.org/obo/CHEBI_27594|http://purl.obolibrary.org/obo/CHEBI_33415
T9 4204-4212 Chemical denotes Nitrogen http://purl.obolibrary.org/obo/CHEBI_17997
T10 4514-4526 Chemical denotes contaminants http://purl.obolibrary.org/obo/CHEBI_143130
T11 4756-4759 Chemical denotes GHG http://purl.obolibrary.org/obo/CHEBI_76413
T12 5176-5179 Chemical denotes NO2 http://purl.obolibrary.org/obo/CHEBI_16301|http://purl.obolibrary.org/obo/CHEBI_33101
T14 5298-5306 Chemical denotes Nitrogen http://purl.obolibrary.org/obo/CHEBI_17997
T15 5316-5319 Chemical denotes NO2 http://purl.obolibrary.org/obo/CHEBI_16301|http://purl.obolibrary.org/obo/CHEBI_33101
T17 6569-6575 Chemical denotes carbon http://purl.obolibrary.org/obo/CHEBI_27594|http://purl.obolibrary.org/obo/CHEBI_33415
T19 7596-7604 Chemical denotes solution http://purl.obolibrary.org/obo/CHEBI_75958
T20 11792-11797 Chemical denotes water http://purl.obolibrary.org/obo/CHEBI_15377
T21 12855-12863 Chemical denotes nitrogen http://purl.obolibrary.org/obo/CHEBI_25555

LitCovid-PD-GO-BP

Id Subject Object Predicate Lexical cue
T1 895-904 http://purl.obolibrary.org/obo/GO_0016032 denotes virulence
T2 895-904 http://purl.obolibrary.org/obo/GO_0009405 denotes virulence
T3 1555-1566 http://purl.obolibrary.org/obo/GO_0009056 denotes degradation
T4 2331-2337 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T5 3401-3407 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T6 6273-6279 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T7 6655-6661 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T8 6735-6743 http://purl.obolibrary.org/obo/GO_0007612 denotes learning
T9 7249-7255 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T10 7294-7300 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T11 9581-9592 http://purl.obolibrary.org/obo/GO_0009056 denotes degradation
T12 9810-9818 http://purl.obolibrary.org/obo/GO_0007612 denotes learning
T13 10155-10166 http://purl.obolibrary.org/obo/GO_0009056 denotes degradation
T14 12296-12302 http://purl.obolibrary.org/obo/GO_0040007 denotes growth

LitCovid-sentences

Id Subject Object Predicate Lexical cue
T1 0-52 Sentence denotes Coronavirus outbreak is a symptom of Gaia's sickness
T2 54-194 Sentence denotes It was New Year's Eve when Chinese authorities alerted WHO that several cases of an unusual pneumonia appeared in Wuhan (Huang et al. 2020).
T3 195-393 Sentence denotes The COVID-19 was still unknown at that time but, in the first months of 2020, its outbreak has infected millions of people, killing (directly or indirectly) hundreds of thousands of them (WHO 2020).
T4 394-576 Sentence denotes The panic related to the pandemic distribution of the virus shut down whole regions (in China, Iran, the United States, etc.) and even entire countries (Italy, Spain, Austria, etc.).
T5 577-876 Sentence denotes Although it is not the worst microscopic killer humanity has ever known (for instance, think about the casualties due to the Black Death and the HIV; Wainberg et al. 2008; Haensch et al. 2010), this coronavirus is already changing our state of mind and impacting on our lifestyle, at a global scale.
T6 877-963 Sentence denotes But its expanding virulence should not be the scariest issue related to this pathogen.
T7 964-1050 Sentence denotes COVID-19 is evidently a symptom of how sick of us is Gaia, our planet (Lovelock 2007).
T8 1051-1194 Sentence denotes No need to invoke here even the existence of contended superorganisms, neither to argue in favour of teleological revenge (Boston et al. 2004).
T9 1195-1419 Sentence denotes What I fear is that the systematic and long-term impacts we are having on our Earth is, and will continue to, challenging our modern lifestyle, just as dangerous prolonged habits impair a body's health (Cazzolla Gatti 2018).
T10 1420-2134 Sentence denotes Our massive emission of carbon stored into the ground during millions of years in just a few centuries (Steffen et al. 2007), our deep degradation of forest (Betts et al. 2017) and marine (Worm et al. 2006) ecosystems that threatened their integrity and resilience, our increasing urbanization (Seto et al. 2012) and pollution that contaminates even the most remote areas of this planet (Cozar et al. 2017), and our immense pressure on other species that is leading the world's biodiversity towards the sixth mass extinction (Barnosky et al. 2011; Ceballo et al. 2017), cannot do anything else than harm the global system and trigger dangerous feedbacks (simply, negative adjusting reactions; Cazzolla Gatti et al.
T11 2135-2156 Sentence denotes 2018) on our species.
T12 2157-2265 Sentence denotes In a few words, we are too many, travel too often, and consume too much on our planet (Cazzolla Gatti 2016).
T13 2266-2517 Sentence denotes These are the conditions when, in ecological systems, population growth is constrained by the environmental carrying capacity (Cohen 1995) and threatened by infective diseases (Jones et al. 2008), which spread easier and faster in overpopulated areas.
T14 2518-2664 Sentence denotes It is not a coincidence that the likely origin of this coronavirus is in the human-animal relations that occurred in China (Poon and Peiris 2020).
T15 2665-2853 Sentence denotes Although it is not clear yet if either the interaction with seafood, bats or bushmeat played a role in the emergence of this virus, most agree that it crossed from animals to human beings.
T16 2854-3339 Sentence denotes As for many other infective diseases such as HIV, which was likely transmitted by chimp meat consumption (Hahan et al. 2000), malaria and dengue fever, which are very sensitive to deforestation and climate change (Yasuoka and Levins 2007; Colon-Gonzalex et al. 2013), meningitis, which can spread out after prolonged drought (Molesworth 2003), etc., the overexploitation of habitats and the huge impact we have on wildlife facilitates the sudden appearance of new dangerous sicknesses.
T17 3340-3499 Sentence denotes All this, associated with the unstoppable human population's growth and fast-moving dispersal of its individuals, creates the perfect conditions for pandemics.
T18 3500-3588 Sentence denotes As I said: the planet is sick of us and makes us sick; it's a natural negative feedback.
T19 3589-3717 Sentence denotes As usual, we try to take care of the symptoms once they appear whilst we had time for, but ignored, a more efficient prevention.
T20 3718-3956 Sentence denotes I am afraid that we can put all our efforts to stop COVID-19 during the next months but, if we will not immediately change our national policies and personal lifestyles, other unpleasant surprises will wait behind Gaia's door to humanity.
T21 3957-3995 Sentence denotes Our responsibility is clear (Fig. 1 ).
T22 3996-4203 Sentence denotes In the last months of the virus outbreak, China has reduced its greenhouse gas (GHG) emissions by about 25%, which means more than 200 million tons of carbon dioxide compared with emissions levels in 20191 .
T23 4204-4361 Sentence denotes Nitrogen dioxide and small-particle air pollution, ubiquitous in big Chinese cities in which vehicular traffic and industry are heavy, decreased about 40%2 .
T24 4362-4550 Sentence denotes A similar situation is in Pianura Padana, Italy, where satellite images of the most air-polluted European region show a drastic decrease of atmospheric contaminants in the last days3 , 4 .
T25 4551-4653 Sentence denotes Many airlines recently announced plans to cut flights by more than 30% globally for the next months5 .
T26 4654-4827 Sentence denotes Airplane traffic has significantly dropped worldwide and, because it accounts for about 3-5% of total GHG emissions, this change could have a major impact on the atmosphere.
T27 4828-5037 Sentence denotes Similarly, forecasts for oil demand in 2020 has been lowered by energy agencies6 because coronavirus forces people to stay at home, leave cars in the garage, reduce the shopping, and save energy and resources.
T28 5038-6184 Sentence denotes Figure 1 The impact of coronavirus outbreak on atmospheric pollution and resource/energy consumption: a) the decline of mean tropospheric NO2 (μmol/m2), a major air pollutant, in Eastern China from January to February 2020 (adapted from NASA2); b) the drop of Nitrogen Dioxide (NO2) over Italy, particularly in Pianura Padana, seen from the Sentinel-5P satellite between January and March 2020 (adapted from ESA3); c) the reduction of air-particle (PM10; μg/m3) over Lombardia and Milan (Italy) in just 10 days after the area shut down (adapted from ARPA Lombardia4); d) the variation in 7-days moving average of commercial flights from 2019 to 2020 detected by Flighradar245; e) the daily coal use by six main power companies before and after the Chinese New Year (dashed red line) has not recovered in 2020 after the holidays, when most business close down, as in the period 2014-2020 (adapted from CREA1); f) the global oil demand (historical; grey histograms) from 2011 to 2019 is expected in 2020-2025 to show a decreasing trend (dashed red line) due to 2020 negative consumption (in thousand barrels of oil per day, mb/d; adapted from IEA6)
T29 6185-6305 Sentence denotes In this scenario of a broad global spread of the COVID-19, modelling says that economic growth will be halved in 20207 .
T30 6306-6391 Sentence denotes Despite this being bad news for world affairs, it may actually be a panacea for Gaia.
T31 6392-6562 Sentence denotes It might also be true, as analysts recently suggested, that decreased travelling, consumption, and energy demand will limit money and political will from climate efforts.
T32 6563-6662 Sentence denotes Then, carbon emissions are likely to rise again as soon as the economy restarts its foolish growth.
T33 6663-6805 Sentence denotes Projections, however, do not take into account a life lesson we are all learning these days: we cannot stop traveling, reproducing, consuming.
T34 6806-6853 Sentence denotes But we have to do it sustainably and ethically.
T35 6854-6964 Sentence denotes The economy, as well as our population, cannot continue growing indefinitely in a sustainable and ethical way.
T36 6965-7171 Sentence denotes The myth of sustainable development, greenwashed by the green economy and certification labels, cannot persist in a planet threatened by only one species, which created the condition for its own extinction.
T37 7172-7256 Sentence denotes We can only sustainably de-grow, creating an open space only for qualitative growth.
T38 7257-7422 Sentence denotes Sustainable degrowth and qualitative growth may still look fancy and utopian ideas but they are what many people are experiencing these weeks of compulsory sobriety.
T39 7423-7765 Sentence denotes Humanity may rediscover the pleasure of a slower life, spending more time at home with family, reducing useless travelling towards offices when teleworking can be a win-win solution, giving more value to time and more time to values, getting back to nature, spending more time in local, creative purposeful pursuits such as growing food, etc.
T40 7766-8077 Sentence denotes Our species may also understand that it does not actually need to buy and accumulate cheap, polluting, useless stuff, which are not essential in a pandemic-risk world, and that local groceries and productions are the only life jackets in a globalized world, during an emergency landing to its localized origins.
T41 8078-8213 Sentence denotes In a time of moderation, we may realize that most of our previous needs and habits, which we thought as unavoidable, were just trifles.
T42 8214-8300 Sentence denotes A frivolousness for us that multiplied by billions represents a serious risk for Gaia.
T43 8301-8471 Sentence denotes Think about fish: do we really need to overexploit the stocks in oceans on the other side of the planet to savour sushi in all-you-can-eat restaurants all over the world?
T44 8472-8638 Sentence denotes Think about palm oil: do we really need to harass Southeast Asian forests and their unreplaceable biodiversity to fill our cars and our junk-food with a tropical fat?
T45 8639-8694 Sentence denotes Nowadays, these answers are within our reach: we don't!
T46 8695-8850 Sentence denotes We can live without these unnecessary “privileges” and this will not be an enormous limitation in our lives but represents a gigantic relief for our Earth.
T47 8851-9051 Sentence denotes This pandemic condition makes us clear that human activities and well-being strongly dependent on the health of the global environment and are fully integrated with ecosystem functioning and services.
T48 9052-9194 Sentence denotes We need to rethink the way we model and manage our ecological and economic systems to better address the sustainable use of natural resources.
T49 9195-9342 Sentence denotes The ability to predict the ecological consequences of the way we manage natural resources is now essential to address policies and decision-making.
T50 9343-9513 Sentence denotes Although in the past, ecological models did not often contribute to such predictions (Schuwirth et al. 2019), there is now urgency to use them for practical applications.
T51 9514-9733 Sentence denotes The current epidemiological crisis, linked to global environmental degradation, shows us that indiscriminate exploitation and poorly supported management can be detrimental to ecosystems, other species, and our society.
T52 9734-9962 Sentence denotes Nowadays, humanity has available several modelling approaches (e.g. machine learning, mechanistic and statistical models, etc.) that can be used to predict the response of ecosystems to anthropogenic impacts (Getz et al., 2018).
T53 9963-10266 Sentence denotes Nonetheless, theoretical models unsupported by empirical data and field validation frequently led to either poor predictability or over parameterization, which resulted in catastrophic Nature degradation and misunderstanding about the actual utility of ecological models (Pilkey and Pilkey-Jarvis 2007).
T54 10267-10404 Sentence denotes If anything, ecological research that employs models should be able to answer practical and critical questions, besides theoretical ones.
T55 10405-10528 Sentence denotes More efforts should be put on the variable selection to improve the understanding of causality between actions and impacts.
T56 10529-10660 Sentence denotes Big data should not be tortured, without preliminary hypothesis, until they confess something useful only to publish flawed papers.
T57 10661-10832 Sentence denotes They should, instead, improve model elaboration to align them with the management decision-making, quantifying uncertainty, in order to have enough predictive performance.
T58 10833-10926 Sentence denotes Similarly, advanced computing resources should not be wasted in purposeless data exploration.
T59 10927-11141 Sentence denotes They should, instead, increase the sensitivity and validity of our analyses, to better understand the adequacy and importance of models in improving forecasting, solving management problems, and advancing theories.
T60 11142-11474 Sentence denotes A trans-interdisciplinary holistic approach, which merges the knowledge of theoretical and field biologist, ecological modelers, environmental decision-makers and research, educational, political, and healthcare institutions, would improve our capacity to reduce our impacts on Earth's systems and live more sustainably within Gaia.
T61 11475-12030 Sentence denotes Improved and reliable ecological models can, for instance, help our species to better protect biodiversity and halt its loss, plan habitat and endangered species conservation, assess and preserve ecosystem services, manage and contrast the spread of alien species, decrease deforestation and overfishing, reduce air, water, and soil pollution, adapt to and limit climate change, and – eventually – enhance our species’ health, reducing the risk of pandemic diffusion of resistant viruses and bacteria caused by our mistreatment of wildlife and ecosystems.
T62 12031-12259 Sentence denotes This can re-establish the importance of ecological modelling in fostering the transfer of theoretical scientific knowledge into practical everyday problems and in enabling environmental policymakers to adopt sustainable actions.
T63 12260-12362 Sentence denotes Nowhere it is written that economic growth and environmental exploitation should restart as they were.
T64 12363-12472 Sentence denotes We are receiving warning messages from Gaia, some of the strongest and clearest of all our evolutionary time.
T65 12473-12520 Sentence denotes If we ignore them, we can blame only ourselves.
T66 12522-12556 Sentence denotes Declarations of Competing Interest
T67 12557-12727 Sentence denotes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
T68 12729-12790 Sentence denotes 1 https://energyandcleanair.org/ retrieved on March, 26 2020
T69 12791-12919 Sentence denotes 2 https://www.earthobservatory.nasa.gov/images/146362/airborne-nitrogen-dioxide-plummets-over-china retrieved on March, 20 2020
T70 12920-13055 Sentence denotes 3 https://www.esa.int/ESA_Multimedia/Videos/2020/03/Coronavirus_nitrogen_dioxide_emissions_drop_over_Italy retrieved on March, 24 2020
T71 13056-13175 Sentence denotes 4 https://www.arpalombardia.it/Pages/Aria/Inquinanti/PM10-PM2,5.aspx?firstlevel=Inquinanti retrieved on March, 16 2020
T72 13176-13237 Sentence denotes 5 https://www.flightradar24.com/ retrieved on March, 26 2020
T73 13238-13313 Sentence denotes 6 https://www.iea.org/topics/oil-market-report retrieved on March, 25 2020
T74 13314-13453 Sentence denotes 7 https://www.oecd.org/economy/global-economy-faces-gravest-threat-since-the-crisis-as-coronavirus-spreads.htm retrieved on March, 25 2020

LitCovid-PD-HP

Id Subject Object Predicate Lexical cue hp_id
T1 146-155 Phenotype denotes pneumonia http://purl.obolibrary.org/obo/HP_0002090
T2 2999-3004 Phenotype denotes fever http://purl.obolibrary.org/obo/HP_0001945
T3 3122-3132 Phenotype denotes meningitis http://purl.obolibrary.org/obo/HP_0001287

LitCovid-PMC-OGER-BB

Id Subject Object Predicate Lexical cue
T1 0-11 NCBITaxon:11118 denotes Coronavirus
T2 199-207 SP_7 denotes COVID-19
T3 311-317 NCBITaxon:9606 denotes people
T4 448-453 NCBITaxon:10239 denotes virus
T5 708-713 GO:0016265 denotes Death
T6 776-787 NCBITaxon:11118 denotes coronavirus
T7 964-972 SP_7 denotes COVID-19
T8 1862-1869 NCBITaxon:species denotes species
T9 2148-2155 NCBITaxon:species denotes species
T10 2573-2584 NCBITaxon:11118 denotes coronavirus
T11 2595-2600 SP_6;NCBITaxon:9606 denotes human
T12 2601-2607 NCBITaxon:33208 denotes animal
T13 2734-2738 SP_2;NCBITaxon:9397 denotes bats
T14 2790-2795 NCBITaxon:10239 denotes virus
T15 2829-2836 NCBITaxon:33208 denotes animals
T16 2840-2845 SP_6;NCBITaxon:9606 denotes human
T17 2846-2852 NCBITaxon:40674 denotes beings
T18 2947-2958 GO:0007631 denotes consumption
T19 3382-3387 SP_6;NCBITaxon:9606 denotes human
T20 3441-3452 NCBITaxon:1 denotes individuals
T21 3770-3778 SP_7 denotes COVID-19
T22 4022-4027 NCBITaxon:10239 denotes virus
T23 4147-4161 CHEBI:16526;CHEBI:16526 denotes carbon dioxide
T24 4204-4220 CHEBI:33101;CHEBI:33101 denotes Nitrogen dioxide
T25 4917-4928 NCBITaxon:11118 denotes coronavirus
T26 4936-4942 NCBITaxon:9606 denotes people
T27 5061-5072 NCBITaxon:11118 denotes coronavirus
T28 5176-5179 CHEBI:17997;CHEBI:17997 denotes NO2
T29 5203-5212 CHEBI:33893;CHEBI:33893 denotes pollutant
T30 5298-5314 CHEBI:33101;CHEBI:33101 denotes Nitrogen Dioxide
T31 5316-5319 CHEBI:17997;CHEBI:17997 denotes NO2
T32 5939-5944 PR:000033060 denotes CREA1
T33 6111-6122 GO:0007631 denotes consumption
T41 6234-6242 SP_7 denotes COVID-19
T42 6474-6485 GO:0007631 denotes consumption
T43 6663-6674 GO:0042995 denotes Projections
T44 6712-6716 UBERON:0000104 denotes life
T45 6735-6743 GO:0007612 denotes learning
T46 6795-6804 GO:0007631 denotes consuming
T47 6910-6917 GO:0040007 denotes growing
T48 7111-7118 NCBITaxon:species denotes species
T49 7199-7203 GO:0040007 denotes grow
T50 7363-7369 NCBITaxon:9606 denotes people
T51 7472-7476 UBERON:0000104 denotes life
T52 7596-7604 CHEBI:75958;CHEBI:75958 denotes solution
T53 7747-7754 GO:0040007 denotes growing
T54 7755-7759 CHEBI:33290;CHEBI:33290 denotes food
T55 7770-7777 NCBITaxon:species denotes species
T56 7988-8000 UBERON:0000104 denotes life jackets
T57 8613-8617 CHEBI:33290;CHEBI:33290 denotes food
T58 8895-8900 SP_6;NCBITaxon:9606 denotes human
T59 9708-9715 NCBITaxon:species denotes species
T60 9810-9818 GO:0007612 denotes learning
T61 11543-11550 NCBITaxon:species denotes species
T62 11629-11636 NCBITaxon:species denotes species
T63 11731-11738 NCBITaxon:species denotes species
T64 11792-11797 CHEBI:15377;CHEBI:15377 denotes water
T65 11885-11892 NCBITaxon:species denotes species
T66 11955-11962 NCBITaxon:10239 denotes viruses
T67 11967-11975 NCBITaxon:2 denotes bacteria
T68 12006-12014 NCBITaxon:species denotes wildlife
T26583 0-11 NCBITaxon:11118 denotes Coronavirus
T18371 199-207 SP_7 denotes COVID-19
T92958 311-317 NCBITaxon:9606 denotes people
T50959 448-453 NCBITaxon:10239 denotes virus
T89969 708-713 GO:0016265 denotes Death
T60357 776-787 NCBITaxon:11118 denotes coronavirus
T42210 964-972 SP_7 denotes COVID-19
T90312 1862-1869 NCBITaxon:species denotes species
T55090 2148-2155 NCBITaxon:species denotes species
T58529 2573-2584 NCBITaxon:11118 denotes coronavirus
T86052 2595-2600 SP_6;NCBITaxon:9606 denotes human
T1953 2601-2607 NCBITaxon:33208 denotes animal
T3938 2734-2738 SP_2;NCBITaxon:9397 denotes bats
T12464 2790-2795 NCBITaxon:10239 denotes virus
T81135 2829-2836 NCBITaxon:33208 denotes animals
T68957 2840-2845 SP_6;NCBITaxon:9606 denotes human
T98272 2846-2852 NCBITaxon:40674 denotes beings
T31038 2947-2958 GO:0007631 denotes consumption
T93124 3382-3387 SP_6;NCBITaxon:9606 denotes human
T27975 3441-3452 NCBITaxon:1 denotes individuals
T37592 3770-3778 SP_7 denotes COVID-19
T7607 4022-4027 NCBITaxon:10239 denotes virus
T82562 4147-4161 CHEBI:16526;CHEBI:16526 denotes carbon dioxide
T12384 4204-4220 CHEBI:33101;CHEBI:33101 denotes Nitrogen dioxide
T88593 4917-4928 NCBITaxon:11118 denotes coronavirus
T89035 4936-4942 NCBITaxon:9606 denotes people
T20352 5061-5072 NCBITaxon:11118 denotes coronavirus
T75183 5176-5179 CHEBI:17997;CHEBI:17997 denotes NO2
T62793 5203-5212 CHEBI:33893;CHEBI:33893 denotes pollutant
T70362 5298-5314 CHEBI:33101;CHEBI:33101 denotes Nitrogen Dioxide
T76478 5316-5319 CHEBI:17997;CHEBI:17997 denotes NO2
T42427 5939-5944 PR:000033060 denotes CREA1
T38978 6111-6122 GO:0007631 denotes consumption
T76566 6234-6242 SP_7 denotes COVID-19
T89204 6474-6485 GO:0007631 denotes consumption
T85858 6663-6674 GO:0042995 denotes Projections
T98402 6712-6716 UBERON:0000104 denotes life
T5900 6735-6743 GO:0007612 denotes learning
T40905 6795-6804 GO:0007631 denotes consuming
T2274 6910-6917 GO:0040007 denotes growing
T17753 7111-7118 NCBITaxon:species denotes species
T95466 7199-7203 GO:0040007 denotes grow
T9903 7363-7369 NCBITaxon:9606 denotes people
T44745 7472-7476 UBERON:0000104 denotes life
T36355 7596-7604 CHEBI:75958;CHEBI:75958 denotes solution
T14814 7747-7754 GO:0040007 denotes growing
T64583 7755-7759 CHEBI:33290;CHEBI:33290 denotes food
T89183 7770-7777 NCBITaxon:species denotes species
T75445 7988-8000 UBERON:0000104 denotes life jackets
T88017 8613-8617 CHEBI:33290;CHEBI:33290 denotes food
T49667 8895-8900 SP_6;NCBITaxon:9606 denotes human
T68198 9708-9715 NCBITaxon:species denotes species
T77596 9810-9818 GO:0007612 denotes learning
T27287 11543-11550 NCBITaxon:species denotes species
T59278 11629-11636 NCBITaxon:species denotes species
T62507 11731-11738 NCBITaxon:species denotes species
T31600 11792-11797 CHEBI:15377;CHEBI:15377 denotes water
T71812 11885-11892 NCBITaxon:species denotes species
T37241 11955-11962 NCBITaxon:10239 denotes viruses
T45373 11967-11975 NCBITaxon:2 denotes bacteria
T50339 12006-12014 NCBITaxon:species denotes wildlife