PMC:7102556 / 11874-12619 JSONTXT

Annnotations TAB JSON ListView MergeView

    2_test

    However, several bottlenecks typically delay the approval of vaccines to prevent CoVs infection. First, a lack of proper animal models for evaluating vaccine efficacy. Second, there are limitations from the S protein itself, such as mutations in the neutralization antibody epitopes in S protein that can cause virus escape [45], or non-neutralization antibody epitopes in vaccines that may elicit antibody-mediated disease enhancement (ADE) [46]. Third, DNA vaccines may recombine with other viruses. Fourth, pre-existing immunity may eliminate the vaccine by removing the general human virus vectors [47]. Finally, there is the problem of return on investment which may be slow and, hence, inhibit investments and slow down the clinical study.

    LitCovid-sentences

    However, several bottlenecks typically delay the approval of vaccines to prevent CoVs infection. First, a lack of proper animal models for evaluating vaccine efficacy. Second, there are limitations from the S protein itself, such as mutations in the neutralization antibody epitopes in S protein that can cause virus escape [45], or non-neutralization antibody epitopes in vaccines that may elicit antibody-mediated disease enhancement (ADE) [46]. Third, DNA vaccines may recombine with other viruses. Fourth, pre-existing immunity may eliminate the vaccine by removing the general human virus vectors [47]. Finally, there is the problem of return on investment which may be slow and, hence, inhibit investments and slow down the clinical study.

    LitCovid-PD-FMA-UBERON

    However, several bottlenecks typically delay the approval of vaccines to prevent CoVs infection. First, a lack of proper animal models for evaluating vaccine efficacy. Second, there are limitations from the S protein itself, such as mutations in the neutralization antibody epitopes in S protein that can cause virus escape [45], or non-neutralization antibody epitopes in vaccines that may elicit antibody-mediated disease enhancement (ADE) [46]. Third, DNA vaccines may recombine with other viruses. Fourth, pre-existing immunity may eliminate the vaccine by removing the general human virus vectors [47]. Finally, there is the problem of return on investment which may be slow and, hence, inhibit investments and slow down the clinical study.

    LitCovid-PD-MONDO

    However, several bottlenecks typically delay the approval of vaccines to prevent CoVs infection. First, a lack of proper animal models for evaluating vaccine efficacy. Second, there are limitations from the S protein itself, such as mutations in the neutralization antibody epitopes in S protein that can cause virus escape [45], or non-neutralization antibody epitopes in vaccines that may elicit antibody-mediated disease enhancement (ADE) [46]. Third, DNA vaccines may recombine with other viruses. Fourth, pre-existing immunity may eliminate the vaccine by removing the general human virus vectors [47]. Finally, there is the problem of return on investment which may be slow and, hence, inhibit investments and slow down the clinical study.

    LitCovid-PubTator

    However, several bottlenecks typically delay the approval of vaccines to prevent CoVs infection. First, a lack of proper animal models for evaluating vaccine efficacy. Second, there are limitations from the S protein itself, such as mutations in the neutralization antibody epitopes in S protein that can cause virus escape [45], or non-neutralization antibody epitopes in vaccines that may elicit antibody-mediated disease enhancement (ADE) [46]. Third, DNA vaccines may recombine with other viruses. Fourth, pre-existing immunity may eliminate the vaccine by removing the general human virus vectors [47]. Finally, there is the problem of return on investment which may be slow and, hence, inhibit investments and slow down the clinical study.

    LitCovid-PD-CLO

    However, several bottlenecks typically delay the approval of vaccines to prevent CoVs infection. First, a lack of proper animal models for evaluating vaccine efficacy. Second, there are limitations from the S protein itself, such as mutations in the neutralization antibody epitopes in S protein that can cause virus escape [45], or non-neutralization antibody epitopes in vaccines that may elicit antibody-mediated disease enhancement (ADE) [46]. Third, DNA vaccines may recombine with other viruses. Fourth, pre-existing immunity may eliminate the vaccine by removing the general human virus vectors [47]. Finally, there is the problem of return on investment which may be slow and, hence, inhibit investments and slow down the clinical study.

    LitCovid-PD-CHEBI

    However, several bottlenecks typically delay the approval of vaccines to prevent CoVs infection. First, a lack of proper animal models for evaluating vaccine efficacy. Second, there are limitations from the S protein itself, such as mutations in the neutralization antibody epitopes in S protein that can cause virus escape [45], or non-neutralization antibody epitopes in vaccines that may elicit antibody-mediated disease enhancement (ADE) [46]. Third, DNA vaccines may recombine with other viruses. Fourth, pre-existing immunity may eliminate the vaccine by removing the general human virus vectors [47]. Finally, there is the problem of return on investment which may be slow and, hence, inhibit investments and slow down the clinical study.