PMC:7081066 / 6060-7093
Annnotations
LitCovid-PubTator
{"project":"LitCovid-PubTator","denotations":[{"id":"193","span":{"begin":29,"end":34},"obj":"Gene"},{"id":"194","span":{"begin":644,"end":649},"obj":"Gene"},{"id":"195","span":{"begin":443,"end":448},"obj":"Gene"},{"id":"196","span":{"begin":56,"end":66},"obj":"Species"},{"id":"197","span":{"begin":75,"end":79},"obj":"Species"},{"id":"198","span":{"begin":81,"end":89},"obj":"Species"},{"id":"199","span":{"begin":203,"end":213},"obj":"Species"},{"id":"200","span":{"begin":225,"end":228},"obj":"Species"},{"id":"201","span":{"begin":292,"end":300},"obj":"Species"},{"id":"202","span":{"begin":316,"end":319},"obj":"Species"},{"id":"203","span":{"begin":323,"end":342},"obj":"Species"},{"id":"204","span":{"begin":461,"end":464},"obj":"Species"},{"id":"205","span":{"begin":472,"end":482},"obj":"Species"},{"id":"206","span":{"begin":660,"end":668},"obj":"Species"},{"id":"207","span":{"begin":677,"end":680},"obj":"Species"},{"id":"208","span":{"begin":686,"end":705},"obj":"Species"},{"id":"209","span":{"begin":764,"end":774},"obj":"Species"},{"id":"210","span":{"begin":854,"end":864},"obj":"Species"},{"id":"211","span":{"begin":881,"end":884},"obj":"Species"},{"id":"212","span":{"begin":890,"end":909},"obj":"Species"},{"id":"213","span":{"begin":959,"end":964},"obj":"Species"}],"attributes":[{"id":"A193","pred":"tao:has_database_id","subj":"193","obj":"Gene:43740568"},{"id":"A194","pred":"tao:has_database_id","subj":"194","obj":"Gene:43740568"},{"id":"A195","pred":"tao:has_database_id","subj":"195","obj":"Gene:43740568"},{"id":"A196","pred":"tao:has_database_id","subj":"196","obj":"Tax:2697049"},{"id":"A197","pred":"tao:has_database_id","subj":"197","obj":"Tax:11118"},{"id":"A198","pred":"tao:has_database_id","subj":"198","obj":"Tax:694009"},{"id":"A199","pred":"tao:has_database_id","subj":"199","obj":"Tax:2697049"},{"id":"A200","pred":"tao:has_database_id","subj":"200","obj":"Tax:11118"},{"id":"A201","pred":"tao:has_database_id","subj":"201","obj":"Tax:694009"},{"id":"A202","pred":"tao:has_database_id","subj":"202","obj":"Tax:11118"},{"id":"A203","pred":"tao:has_database_id","subj":"203","obj":"Tax:59477"},{"id":"A204","pred":"tao:has_database_id","subj":"204","obj":"Tax:11118"},{"id":"A205","pred":"tao:has_database_id","subj":"205","obj":"Tax:2697049"},{"id":"A206","pred":"tao:has_database_id","subj":"206","obj":"Tax:694009"},{"id":"A207","pred":"tao:has_database_id","subj":"207","obj":"Tax:11118"},{"id":"A208","pred":"tao:has_database_id","subj":"208","obj":"Tax:89399"},{"id":"A209","pred":"tao:has_database_id","subj":"209","obj":"Tax:2697049"},{"id":"A210","pred":"tao:has_database_id","subj":"210","obj":"Tax:2697049"},{"id":"A211","pred":"tao:has_database_id","subj":"211","obj":"Tax:11118"},{"id":"A212","pred":"tao:has_database_id","subj":"212","obj":"Tax:59477"},{"id":"A213","pred":"tao:has_database_id","subj":"213","obj":"Tax:2697049"}],"namespaces":[{"prefix":"Tax","uri":"https://www.ncbi.nlm.nih.gov/taxonomy/"},{"prefix":"MESH","uri":"https://id.nlm.nih.gov/mesh/"},{"prefix":"Gene","uri":"https://www.ncbi.nlm.nih.gov/gene/"},{"prefix":"CVCL","uri":"https://web.expasy.org/cellosaurus/CVCL_"}],"text":"Phylogenetic analysis of the spike protein sequences of SARS-CoV-2 and Bat-CoVs, SARS-CoV is shown in Figure 1(Fig. 1). The results are in agreement with recent reports of an independent introduction of SARS-CoV-2 from a Bat-CoV, different from the spillover which led to the introduction of SARS-CoV, being the Bat-CoV of Rhinolophus affinis the probable ancestor of this new virus (Wong et al., 2020[18]). Indeed, the sequences of the whole spike of this Bat-CoV and of SARS-CoV-2 share 97.7 % identity (Figure 1(Fig. 1)). More divergence is found however in the S1 subunit, particularly in the Receptor Binding Domain (RBD) of the different spike proteins. SARS-CoV and Bat-CoV from Rhinolophus sinicus (originally signaled as the most closely related virus to SARS-CoV-2) exhibit several amino acid substitutions and deletions in the RBD compared to SARS-CoV-2. The RBD of Bat-CoV from Rhinolophus affinis, although more closely related to the one of SAS-CoV-2, also displayed several amino acid substitutions (Figure 2(Fig. 2))."}
LitCovid-PD-FMA-UBERON
{"project":"LitCovid-PD-FMA-UBERON","denotations":[{"id":"T36","span":{"begin":35,"end":42},"obj":"Body_part"},{"id":"T37","span":{"begin":650,"end":658},"obj":"Body_part"},{"id":"T38","span":{"begin":792,"end":802},"obj":"Body_part"},{"id":"T39","span":{"begin":989,"end":999},"obj":"Body_part"}],"attributes":[{"id":"A36","pred":"fma_id","subj":"T36","obj":"http://purl.org/sig/ont/fma/fma67257"},{"id":"A37","pred":"fma_id","subj":"T37","obj":"http://purl.org/sig/ont/fma/fma67257"},{"id":"A38","pred":"fma_id","subj":"T38","obj":"http://purl.org/sig/ont/fma/fma82739"},{"id":"A39","pred":"fma_id","subj":"T39","obj":"http://purl.org/sig/ont/fma/fma82739"}],"text":"Phylogenetic analysis of the spike protein sequences of SARS-CoV-2 and Bat-CoVs, SARS-CoV is shown in Figure 1(Fig. 1). The results are in agreement with recent reports of an independent introduction of SARS-CoV-2 from a Bat-CoV, different from the spillover which led to the introduction of SARS-CoV, being the Bat-CoV of Rhinolophus affinis the probable ancestor of this new virus (Wong et al., 2020[18]). Indeed, the sequences of the whole spike of this Bat-CoV and of SARS-CoV-2 share 97.7 % identity (Figure 1(Fig. 1)). More divergence is found however in the S1 subunit, particularly in the Receptor Binding Domain (RBD) of the different spike proteins. SARS-CoV and Bat-CoV from Rhinolophus sinicus (originally signaled as the most closely related virus to SARS-CoV-2) exhibit several amino acid substitutions and deletions in the RBD compared to SARS-CoV-2. The RBD of Bat-CoV from Rhinolophus affinis, although more closely related to the one of SAS-CoV-2, also displayed several amino acid substitutions (Figure 2(Fig. 2))."}
LitCovid-PD-MONDO
{"project":"LitCovid-PD-MONDO","denotations":[{"id":"T27","span":{"begin":56,"end":64},"obj":"Disease"},{"id":"T28","span":{"begin":81,"end":89},"obj":"Disease"},{"id":"T29","span":{"begin":203,"end":211},"obj":"Disease"},{"id":"T30","span":{"begin":292,"end":300},"obj":"Disease"},{"id":"T31","span":{"begin":472,"end":480},"obj":"Disease"},{"id":"T32","span":{"begin":660,"end":668},"obj":"Disease"},{"id":"T33","span":{"begin":764,"end":772},"obj":"Disease"},{"id":"T34","span":{"begin":854,"end":862},"obj":"Disease"}],"attributes":[{"id":"A27","pred":"mondo_id","subj":"T27","obj":"http://purl.obolibrary.org/obo/MONDO_0005091"},{"id":"A28","pred":"mondo_id","subj":"T28","obj":"http://purl.obolibrary.org/obo/MONDO_0005091"},{"id":"A29","pred":"mondo_id","subj":"T29","obj":"http://purl.obolibrary.org/obo/MONDO_0005091"},{"id":"A30","pred":"mondo_id","subj":"T30","obj":"http://purl.obolibrary.org/obo/MONDO_0005091"},{"id":"A31","pred":"mondo_id","subj":"T31","obj":"http://purl.obolibrary.org/obo/MONDO_0005091"},{"id":"A32","pred":"mondo_id","subj":"T32","obj":"http://purl.obolibrary.org/obo/MONDO_0005091"},{"id":"A33","pred":"mondo_id","subj":"T33","obj":"http://purl.obolibrary.org/obo/MONDO_0005091"},{"id":"A34","pred":"mondo_id","subj":"T34","obj":"http://purl.obolibrary.org/obo/MONDO_0005091"}],"text":"Phylogenetic analysis of the spike protein sequences of SARS-CoV-2 and Bat-CoVs, SARS-CoV is shown in Figure 1(Fig. 1). The results are in agreement with recent reports of an independent introduction of SARS-CoV-2 from a Bat-CoV, different from the spillover which led to the introduction of SARS-CoV, being the Bat-CoV of Rhinolophus affinis the probable ancestor of this new virus (Wong et al., 2020[18]). Indeed, the sequences of the whole spike of this Bat-CoV and of SARS-CoV-2 share 97.7 % identity (Figure 1(Fig. 1)). More divergence is found however in the S1 subunit, particularly in the Receptor Binding Domain (RBD) of the different spike proteins. SARS-CoV and Bat-CoV from Rhinolophus sinicus (originally signaled as the most closely related virus to SARS-CoV-2) exhibit several amino acid substitutions and deletions in the RBD compared to SARS-CoV-2. The RBD of Bat-CoV from Rhinolophus affinis, although more closely related to the one of SAS-CoV-2, also displayed several amino acid substitutions (Figure 2(Fig. 2))."}
LitCovid-PD-CLO
{"project":"LitCovid-PD-CLO","denotations":[{"id":"T34","span":{"begin":219,"end":220},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T35","span":{"begin":377,"end":382},"obj":"http://purl.obolibrary.org/obo/NCBITaxon_10239"},{"id":"T36","span":{"begin":402,"end":404},"obj":"http://purl.obolibrary.org/obo/CLO_0050510"},{"id":"T37","span":{"begin":452,"end":460},"obj":"http://purl.obolibrary.org/obo/NCBITaxon_9397"},{"id":"T38","span":{"begin":565,"end":567},"obj":"http://purl.obolibrary.org/obo/CLO_0050050"},{"id":"T39","span":{"begin":718,"end":726},"obj":"http://purl.obolibrary.org/obo/SO_0000418"},{"id":"T40","span":{"begin":755,"end":760},"obj":"http://purl.obolibrary.org/obo/NCBITaxon_10239"},{"id":"T41","span":{"begin":955,"end":958},"obj":"http://purl.obolibrary.org/obo/CLO_0051568"}],"text":"Phylogenetic analysis of the spike protein sequences of SARS-CoV-2 and Bat-CoVs, SARS-CoV is shown in Figure 1(Fig. 1). The results are in agreement with recent reports of an independent introduction of SARS-CoV-2 from a Bat-CoV, different from the spillover which led to the introduction of SARS-CoV, being the Bat-CoV of Rhinolophus affinis the probable ancestor of this new virus (Wong et al., 2020[18]). Indeed, the sequences of the whole spike of this Bat-CoV and of SARS-CoV-2 share 97.7 % identity (Figure 1(Fig. 1)). More divergence is found however in the S1 subunit, particularly in the Receptor Binding Domain (RBD) of the different spike proteins. SARS-CoV and Bat-CoV from Rhinolophus sinicus (originally signaled as the most closely related virus to SARS-CoV-2) exhibit several amino acid substitutions and deletions in the RBD compared to SARS-CoV-2. The RBD of Bat-CoV from Rhinolophus affinis, although more closely related to the one of SAS-CoV-2, also displayed several amino acid substitutions (Figure 2(Fig. 2))."}
LitCovid-PD-CHEBI
{"project":"LitCovid-PD-CHEBI","denotations":[{"id":"T42","span":{"begin":35,"end":42},"obj":"Chemical"},{"id":"T43","span":{"begin":650,"end":658},"obj":"Chemical"},{"id":"T44","span":{"begin":792,"end":802},"obj":"Chemical"},{"id":"T45","span":{"begin":792,"end":797},"obj":"Chemical"},{"id":"T46","span":{"begin":798,"end":802},"obj":"Chemical"},{"id":"T47","span":{"begin":989,"end":999},"obj":"Chemical"},{"id":"T48","span":{"begin":989,"end":994},"obj":"Chemical"},{"id":"T49","span":{"begin":995,"end":999},"obj":"Chemical"}],"attributes":[{"id":"A42","pred":"chebi_id","subj":"T42","obj":"http://purl.obolibrary.org/obo/CHEBI_36080"},{"id":"A43","pred":"chebi_id","subj":"T43","obj":"http://purl.obolibrary.org/obo/CHEBI_36080"},{"id":"A44","pred":"chebi_id","subj":"T44","obj":"http://purl.obolibrary.org/obo/CHEBI_33709"},{"id":"A45","pred":"chebi_id","subj":"T45","obj":"http://purl.obolibrary.org/obo/CHEBI_46882"},{"id":"A46","pred":"chebi_id","subj":"T46","obj":"http://purl.obolibrary.org/obo/CHEBI_37527"},{"id":"A47","pred":"chebi_id","subj":"T47","obj":"http://purl.obolibrary.org/obo/CHEBI_33709"},{"id":"A48","pred":"chebi_id","subj":"T48","obj":"http://purl.obolibrary.org/obo/CHEBI_46882"},{"id":"A49","pred":"chebi_id","subj":"T49","obj":"http://purl.obolibrary.org/obo/CHEBI_37527"}],"text":"Phylogenetic analysis of the spike protein sequences of SARS-CoV-2 and Bat-CoVs, SARS-CoV is shown in Figure 1(Fig. 1). The results are in agreement with recent reports of an independent introduction of SARS-CoV-2 from a Bat-CoV, different from the spillover which led to the introduction of SARS-CoV, being the Bat-CoV of Rhinolophus affinis the probable ancestor of this new virus (Wong et al., 2020[18]). Indeed, the sequences of the whole spike of this Bat-CoV and of SARS-CoV-2 share 97.7 % identity (Figure 1(Fig. 1)). More divergence is found however in the S1 subunit, particularly in the Receptor Binding Domain (RBD) of the different spike proteins. SARS-CoV and Bat-CoV from Rhinolophus sinicus (originally signaled as the most closely related virus to SARS-CoV-2) exhibit several amino acid substitutions and deletions in the RBD compared to SARS-CoV-2. The RBD of Bat-CoV from Rhinolophus affinis, although more closely related to the one of SAS-CoV-2, also displayed several amino acid substitutions (Figure 2(Fig. 2))."}
LitCovid-sentences
{"project":"LitCovid-sentences","denotations":[{"id":"T54","span":{"begin":0,"end":119},"obj":"Sentence"},{"id":"T55","span":{"begin":120,"end":407},"obj":"Sentence"},{"id":"T56","span":{"begin":408,"end":524},"obj":"Sentence"},{"id":"T57","span":{"begin":525,"end":659},"obj":"Sentence"},{"id":"T58","span":{"begin":660,"end":865},"obj":"Sentence"},{"id":"T59","span":{"begin":866,"end":1033},"obj":"Sentence"}],"namespaces":[{"prefix":"_base","uri":"http://pubannotation.org/ontology/tao.owl#"}],"text":"Phylogenetic analysis of the spike protein sequences of SARS-CoV-2 and Bat-CoVs, SARS-CoV is shown in Figure 1(Fig. 1). The results are in agreement with recent reports of an independent introduction of SARS-CoV-2 from a Bat-CoV, different from the spillover which led to the introduction of SARS-CoV, being the Bat-CoV of Rhinolophus affinis the probable ancestor of this new virus (Wong et al., 2020[18]). Indeed, the sequences of the whole spike of this Bat-CoV and of SARS-CoV-2 share 97.7 % identity (Figure 1(Fig. 1)). More divergence is found however in the S1 subunit, particularly in the Receptor Binding Domain (RBD) of the different spike proteins. SARS-CoV and Bat-CoV from Rhinolophus sinicus (originally signaled as the most closely related virus to SARS-CoV-2) exhibit several amino acid substitutions and deletions in the RBD compared to SARS-CoV-2. The RBD of Bat-CoV from Rhinolophus affinis, although more closely related to the one of SAS-CoV-2, also displayed several amino acid substitutions (Figure 2(Fig. 2))."}