PMC:7078825 / 4031-9073 JSONTXT

Annnotations TAB JSON ListView MergeView

    LitCovid-PMC-OGER-BB

    {"project":"LitCovid-PMC-OGER-BB","denotations":[{"id":"T56","span":{"begin":864,"end":872},"obj":"SP_7"},{"id":"T55","span":{"begin":598,"end":606},"obj":"SP_7"},{"id":"T54","span":{"begin":682,"end":693},"obj":"NCBITaxon:11118"},{"id":"T23","span":{"begin":249,"end":257},"obj":"SP_7"},{"id":"T22","span":{"begin":4247,"end":4258},"obj":"NCBITaxon:11118"},{"id":"T21","span":{"begin":4750,"end":4761},"obj":"NCBITaxon:11118"}],"text":"Lag correlation between daily laboratory-confirmed/suspected cases and Internet searches\nFigure 2 and the Table showed the lag Spearman correlations between the daily new laboratory-confirmed cases (upper panel) and suspected cases (lower panel) of COVID-19 and the Internet search data from Google Trends, Baidu Index and Sina Weibo Index. We found a high correlation with the Internet search data (r \u003e 0.7) 8–10 days earlier for new laboratory-confirmed cases, and 5-7 days earlier for new suspected cases.\nFigure 2 Lag correlations between new laboratory-confirmed cases and suspected cases of COVID-19 and data from Google Trends, Baidu Index and Weibo Index for the keywords ‘coronavirus’ and ‘pneumonia’, China, January–February 2020\nTable Lag correlation coefficients and p values between Internet search data and daily new laboratory-confirmed/suspected COVID-19 cases, China, January–February 2020\nDays earlier Google Trends Baidu Index Sina Weibo Index\nCoronavirus p Pneumonia p Coronavirus p Pneumonia p Coronavirus p Pneumonia p\nNew laboratory-confirmed cases 0 0.176 0.370 −0.035 0.861 0.021 0.917 0.129 0.513 0.106 0.593 0.109 0.582\n1 0.324 0.093 0.122 0.537 0.160 0.416 0.265 0.172 0.202 0.303 0.190 0.332\n2 0.455 0.015 0.271 0.164 0.299 0.122 0.411 0.030 0.346 0.072 0.298 0.123\n3 0.561 0.002 0.388 0.041 0.406 0.032 0.516 0.005 0.431 0.022 0.408 0.031\n4 0.672 \u003c 0.001 0.505 0.006 0.529 0.004 0.641 \u003c 0.001 0.498 0.007 0.470 0.012\n5 0.779  \u003c 0.001 0.606 0.001 0.624 \u003c 0.001 0.722  \u003c 0.001 0.562 0.002 0.553 0.002\n6 0.850  \u003c 0.001 0.712  \u003c 0.001 0.706  \u003c 0.001 0.808  \u003c 0.001 0.679 \u003c 0.001 0.668 \u003c 0.001\n7 0.902  \u003c 0.001 0.777  \u003c 0.001 0.750  \u003c 0.001 0.861  \u003c 0.001 0.751  \u003c 0.001 0.754  \u003c 0.001\n8 0.944  \u003c 0.001 0.835  \u003c 0.001 0.823  \u003c 0.001 0.902   \u003c 0.001 0.829  \u003c 0.001 0.817  \u003c 0.001\n9 0.958   \u003c 0.001 0.878  \u003c 0.001 0.887  \u003c 0.001 0.892  \u003c 0.001 0.876  \u003c 0.001 0.872  \u003c 0.001\n10 0.953  \u003c 0.001 0.893   \u003c 0.001 0.928  \u003c 0.001 0.873  \u003c 0.001 0.921  \u003c 0.001 0.899   \u003c 0.001\n11 0.924  \u003c 0.001 0.845  \u003c 0.001 0.925  \u003c 0.001 0.786  \u003c 0.001 0.917  \u003c 0.001 0.875  \u003c 0.001\n12 0.857  \u003c 0.001 0.818  \u003c 0.001 0.933   \u003c 0.001 0.715  \u003c 0.001 0.944   \u003c 0.001 0.875  \u003c 0.001\n13 0.815  \u003c 0.001 0.762  \u003c 0.001 0.908  \u003c 0.001 0.609 0.001 0.916  \u003c 0.001 0.812  \u003c 0.001\n14 0.783  \u003c 0.001 0.697 \u003c 0.001 0.858  \u003c 0.001 0.496 0.007 0.885  \u003c 0.001 0.733  \u003c 0.001\nNew suspected cases 0 −0.003 0.989 −0.372 0.073 −0.309 0.142 −0.091 0.671 −0.279 0.187 −0.309 0.142\n1 0.246 0.246 −0.116 0.590 −0.068 0.753 0.141 0.511 −0.078 0.716 −0.103 0.630\n2 0.413 0.045 0.104 0.630 0.125 0.560 0.346 0.098 0.089 0.680 0.050 0.818\n3 0.614 0.001 0.312 0.138 0.352 0.091 0.551 0.005 0.253 0.233 0.248 0.243\n4 0.768  \u003c 0.001 0.514 0.010 0.538 0.007 0.697 \u003c 0.001 0.431 0.035 0.383 0.065\n5 0.832  \u003c 0.001 0.687 \u003c 0.001 0.670 \u003c 0.001 0.816  \u003c 0.001 0.520 0.009 0.501 0.013\n6 0.912   \u003c 0.001 0.771  \u003c 0.001 0.725  \u003c 0.001 0.895  \u003c 0.001 0.672 \u003c 0.001 0.670 \u003c 0.001\n7 0.933  \u003c 0.001 0.850  \u003c 0.001 0.830  \u003c 0.001 0.914  \u003c 0.001 0.813  \u003c 0.001 0.872  \u003c 0.001\n8 0.875  \u003c 0.001 0.960   \u003c 0.001 0.906   \u003c 0.001 0.926   \u003c 0.001 0.924   \u003c 0.001 0.907   \u003c 0.001\n9 0.787  \u003c 0.001 0.865  \u003c 0.001 0.882  \u003c 0.001 0.850  \u003c 0.001 0.883  \u003c 0.001 0.899  \u003c 0.001\n10 0.744  \u003c 0.001 0.827  \u003c 0.001 0.841  \u003c 0.001 0.766  \u003c 0.001 0.818  \u003c 0.001 0.832  \u003c 0.001\n11 0.671 \u003c 0.001 0.770  \u003c 0.001 0.790  \u003c 0.001 0.698 \u003c 0.001 0.781  \u003c 0.001 0.802  \u003c 0.001\n12 0.544 0.006 0.693 \u003c 0.001 0.686 \u003c 0.001 0.559 0.005 0.697 \u003c 0.001 0.683 \u003c 0.001\n13 0.482 0.017 0.578 0.003 0.583 0.003 0.454 0.026 0.622 0.001 0.600 0.002\n14 0.497 0.013 0.448 0.028 0.547 0.006 0.288 0.173 0.609 0.002 0.550 0.005\nShaded text: high correlation with r \u003e 0.7. Text in italics: highest correlation. For new laboratory-confirmed cases, the highest correlation was found 9, 12 and 12 days earlier for searches for the keyword ‘coronavirus’ in Google Trends, Baidu Index and Sina Weibo Index with, respectively, r = 0.958, 0.933 and 0.944. For the keyword ‘pneumonia’, the highest correlation was found 10, 8 and 10 days earlier in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.893, 0.944 and 0.899, respectively.\nThe lag correlation of new suspected cases was similar to the laboratory-confirmed cases, with a shorter lag time. The highest correlation was found 6, 8 and 8 days earlier for searches for the keyword ‘coronavirus’ in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.912, 0.906 and 0.924, respectively. For the keyword ‘pneumonia’, the highest correlation was found all 8 days earlier in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.960, 0.926 and 0.907, respectively."}

    LitCovid-PD-MONDO

    {"project":"LitCovid-PD-MONDO","denotations":[{"id":"T22","span":{"begin":249,"end":257},"obj":"Disease"},{"id":"T23","span":{"begin":598,"end":606},"obj":"Disease"},{"id":"T24","span":{"begin":700,"end":709},"obj":"Disease"},{"id":"T25","span":{"begin":864,"end":872},"obj":"Disease"},{"id":"T26","span":{"begin":984,"end":993},"obj":"Disease"},{"id":"T27","span":{"begin":1014,"end":1023},"obj":"Disease"},{"id":"T28","span":{"begin":1044,"end":1053},"obj":"Disease"},{"id":"T29","span":{"begin":4376,"end":4385},"obj":"Disease"},{"id":"T30","span":{"begin":4879,"end":4888},"obj":"Disease"}],"attributes":[{"id":"A22","pred":"mondo_id","subj":"T22","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A23","pred":"mondo_id","subj":"T23","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A24","pred":"mondo_id","subj":"T24","obj":"http://purl.obolibrary.org/obo/MONDO_0005249"},{"id":"A25","pred":"mondo_id","subj":"T25","obj":"http://purl.obolibrary.org/obo/MONDO_0100096"},{"id":"A26","pred":"mondo_id","subj":"T26","obj":"http://purl.obolibrary.org/obo/MONDO_0005249"},{"id":"A27","pred":"mondo_id","subj":"T27","obj":"http://purl.obolibrary.org/obo/MONDO_0005249"},{"id":"A28","pred":"mondo_id","subj":"T28","obj":"http://purl.obolibrary.org/obo/MONDO_0005249"},{"id":"A29","pred":"mondo_id","subj":"T29","obj":"http://purl.obolibrary.org/obo/MONDO_0005249"},{"id":"A30","pred":"mondo_id","subj":"T30","obj":"http://purl.obolibrary.org/obo/MONDO_0005249"}],"text":"Lag correlation between daily laboratory-confirmed/suspected cases and Internet searches\nFigure 2 and the Table showed the lag Spearman correlations between the daily new laboratory-confirmed cases (upper panel) and suspected cases (lower panel) of COVID-19 and the Internet search data from Google Trends, Baidu Index and Sina Weibo Index. We found a high correlation with the Internet search data (r \u003e 0.7) 8–10 days earlier for new laboratory-confirmed cases, and 5-7 days earlier for new suspected cases.\nFigure 2 Lag correlations between new laboratory-confirmed cases and suspected cases of COVID-19 and data from Google Trends, Baidu Index and Weibo Index for the keywords ‘coronavirus’ and ‘pneumonia’, China, January–February 2020\nTable Lag correlation coefficients and p values between Internet search data and daily new laboratory-confirmed/suspected COVID-19 cases, China, January–February 2020\nDays earlier Google Trends Baidu Index Sina Weibo Index\nCoronavirus p Pneumonia p Coronavirus p Pneumonia p Coronavirus p Pneumonia p\nNew laboratory-confirmed cases 0 0.176 0.370 −0.035 0.861 0.021 0.917 0.129 0.513 0.106 0.593 0.109 0.582\n1 0.324 0.093 0.122 0.537 0.160 0.416 0.265 0.172 0.202 0.303 0.190 0.332\n2 0.455 0.015 0.271 0.164 0.299 0.122 0.411 0.030 0.346 0.072 0.298 0.123\n3 0.561 0.002 0.388 0.041 0.406 0.032 0.516 0.005 0.431 0.022 0.408 0.031\n4 0.672 \u003c 0.001 0.505 0.006 0.529 0.004 0.641 \u003c 0.001 0.498 0.007 0.470 0.012\n5 0.779  \u003c 0.001 0.606 0.001 0.624 \u003c 0.001 0.722  \u003c 0.001 0.562 0.002 0.553 0.002\n6 0.850  \u003c 0.001 0.712  \u003c 0.001 0.706  \u003c 0.001 0.808  \u003c 0.001 0.679 \u003c 0.001 0.668 \u003c 0.001\n7 0.902  \u003c 0.001 0.777  \u003c 0.001 0.750  \u003c 0.001 0.861  \u003c 0.001 0.751  \u003c 0.001 0.754  \u003c 0.001\n8 0.944  \u003c 0.001 0.835  \u003c 0.001 0.823  \u003c 0.001 0.902   \u003c 0.001 0.829  \u003c 0.001 0.817  \u003c 0.001\n9 0.958   \u003c 0.001 0.878  \u003c 0.001 0.887  \u003c 0.001 0.892  \u003c 0.001 0.876  \u003c 0.001 0.872  \u003c 0.001\n10 0.953  \u003c 0.001 0.893   \u003c 0.001 0.928  \u003c 0.001 0.873  \u003c 0.001 0.921  \u003c 0.001 0.899   \u003c 0.001\n11 0.924  \u003c 0.001 0.845  \u003c 0.001 0.925  \u003c 0.001 0.786  \u003c 0.001 0.917  \u003c 0.001 0.875  \u003c 0.001\n12 0.857  \u003c 0.001 0.818  \u003c 0.001 0.933   \u003c 0.001 0.715  \u003c 0.001 0.944   \u003c 0.001 0.875  \u003c 0.001\n13 0.815  \u003c 0.001 0.762  \u003c 0.001 0.908  \u003c 0.001 0.609 0.001 0.916  \u003c 0.001 0.812  \u003c 0.001\n14 0.783  \u003c 0.001 0.697 \u003c 0.001 0.858  \u003c 0.001 0.496 0.007 0.885  \u003c 0.001 0.733  \u003c 0.001\nNew suspected cases 0 −0.003 0.989 −0.372 0.073 −0.309 0.142 −0.091 0.671 −0.279 0.187 −0.309 0.142\n1 0.246 0.246 −0.116 0.590 −0.068 0.753 0.141 0.511 −0.078 0.716 −0.103 0.630\n2 0.413 0.045 0.104 0.630 0.125 0.560 0.346 0.098 0.089 0.680 0.050 0.818\n3 0.614 0.001 0.312 0.138 0.352 0.091 0.551 0.005 0.253 0.233 0.248 0.243\n4 0.768  \u003c 0.001 0.514 0.010 0.538 0.007 0.697 \u003c 0.001 0.431 0.035 0.383 0.065\n5 0.832  \u003c 0.001 0.687 \u003c 0.001 0.670 \u003c 0.001 0.816  \u003c 0.001 0.520 0.009 0.501 0.013\n6 0.912   \u003c 0.001 0.771  \u003c 0.001 0.725  \u003c 0.001 0.895  \u003c 0.001 0.672 \u003c 0.001 0.670 \u003c 0.001\n7 0.933  \u003c 0.001 0.850  \u003c 0.001 0.830  \u003c 0.001 0.914  \u003c 0.001 0.813  \u003c 0.001 0.872  \u003c 0.001\n8 0.875  \u003c 0.001 0.960   \u003c 0.001 0.906   \u003c 0.001 0.926   \u003c 0.001 0.924   \u003c 0.001 0.907   \u003c 0.001\n9 0.787  \u003c 0.001 0.865  \u003c 0.001 0.882  \u003c 0.001 0.850  \u003c 0.001 0.883  \u003c 0.001 0.899  \u003c 0.001\n10 0.744  \u003c 0.001 0.827  \u003c 0.001 0.841  \u003c 0.001 0.766  \u003c 0.001 0.818  \u003c 0.001 0.832  \u003c 0.001\n11 0.671 \u003c 0.001 0.770  \u003c 0.001 0.790  \u003c 0.001 0.698 \u003c 0.001 0.781  \u003c 0.001 0.802  \u003c 0.001\n12 0.544 0.006 0.693 \u003c 0.001 0.686 \u003c 0.001 0.559 0.005 0.697 \u003c 0.001 0.683 \u003c 0.001\n13 0.482 0.017 0.578 0.003 0.583 0.003 0.454 0.026 0.622 0.001 0.600 0.002\n14 0.497 0.013 0.448 0.028 0.547 0.006 0.288 0.173 0.609 0.002 0.550 0.005\nShaded text: high correlation with r \u003e 0.7. Text in italics: highest correlation. For new laboratory-confirmed cases, the highest correlation was found 9, 12 and 12 days earlier for searches for the keyword ‘coronavirus’ in Google Trends, Baidu Index and Sina Weibo Index with, respectively, r = 0.958, 0.933 and 0.944. For the keyword ‘pneumonia’, the highest correlation was found 10, 8 and 10 days earlier in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.893, 0.944 and 0.899, respectively.\nThe lag correlation of new suspected cases was similar to the laboratory-confirmed cases, with a shorter lag time. The highest correlation was found 6, 8 and 8 days earlier for searches for the keyword ‘coronavirus’ in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.912, 0.906 and 0.924, respectively. For the keyword ‘pneumonia’, the highest correlation was found all 8 days earlier in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.960, 0.926 and 0.907, respectively."}

    LitCovid-PD-CLO

    {"project":"LitCovid-PD-CLO","denotations":[{"id":"T14","span":{"begin":0,"end":3},"obj":"http://purl.obolibrary.org/obo/CLO_0050236"},{"id":"T15","span":{"begin":123,"end":126},"obj":"http://purl.obolibrary.org/obo/CLO_0050236"},{"id":"T16","span":{"begin":350,"end":351},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T17","span":{"begin":519,"end":522},"obj":"http://purl.obolibrary.org/obo/CLO_0050236"},{"id":"T18","span":{"begin":748,"end":751},"obj":"http://purl.obolibrary.org/obo/CLO_0050236"},{"id":"T19","span":{"begin":2149,"end":2151},"obj":"http://purl.obolibrary.org/obo/CLO_0053733"},{"id":"T20","span":{"begin":3667,"end":3669},"obj":"http://purl.obolibrary.org/obo/CLO_0053733"},{"id":"T21","span":{"begin":4551,"end":4554},"obj":"http://purl.obolibrary.org/obo/CLO_0050236"},{"id":"T22","span":{"begin":4642,"end":4643},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T23","span":{"begin":4652,"end":4655},"obj":"http://purl.obolibrary.org/obo/CLO_0050236"}],"text":"Lag correlation between daily laboratory-confirmed/suspected cases and Internet searches\nFigure 2 and the Table showed the lag Spearman correlations between the daily new laboratory-confirmed cases (upper panel) and suspected cases (lower panel) of COVID-19 and the Internet search data from Google Trends, Baidu Index and Sina Weibo Index. We found a high correlation with the Internet search data (r \u003e 0.7) 8–10 days earlier for new laboratory-confirmed cases, and 5-7 days earlier for new suspected cases.\nFigure 2 Lag correlations between new laboratory-confirmed cases and suspected cases of COVID-19 and data from Google Trends, Baidu Index and Weibo Index for the keywords ‘coronavirus’ and ‘pneumonia’, China, January–February 2020\nTable Lag correlation coefficients and p values between Internet search data and daily new laboratory-confirmed/suspected COVID-19 cases, China, January–February 2020\nDays earlier Google Trends Baidu Index Sina Weibo Index\nCoronavirus p Pneumonia p Coronavirus p Pneumonia p Coronavirus p Pneumonia p\nNew laboratory-confirmed cases 0 0.176 0.370 −0.035 0.861 0.021 0.917 0.129 0.513 0.106 0.593 0.109 0.582\n1 0.324 0.093 0.122 0.537 0.160 0.416 0.265 0.172 0.202 0.303 0.190 0.332\n2 0.455 0.015 0.271 0.164 0.299 0.122 0.411 0.030 0.346 0.072 0.298 0.123\n3 0.561 0.002 0.388 0.041 0.406 0.032 0.516 0.005 0.431 0.022 0.408 0.031\n4 0.672 \u003c 0.001 0.505 0.006 0.529 0.004 0.641 \u003c 0.001 0.498 0.007 0.470 0.012\n5 0.779  \u003c 0.001 0.606 0.001 0.624 \u003c 0.001 0.722  \u003c 0.001 0.562 0.002 0.553 0.002\n6 0.850  \u003c 0.001 0.712  \u003c 0.001 0.706  \u003c 0.001 0.808  \u003c 0.001 0.679 \u003c 0.001 0.668 \u003c 0.001\n7 0.902  \u003c 0.001 0.777  \u003c 0.001 0.750  \u003c 0.001 0.861  \u003c 0.001 0.751  \u003c 0.001 0.754  \u003c 0.001\n8 0.944  \u003c 0.001 0.835  \u003c 0.001 0.823  \u003c 0.001 0.902   \u003c 0.001 0.829  \u003c 0.001 0.817  \u003c 0.001\n9 0.958   \u003c 0.001 0.878  \u003c 0.001 0.887  \u003c 0.001 0.892  \u003c 0.001 0.876  \u003c 0.001 0.872  \u003c 0.001\n10 0.953  \u003c 0.001 0.893   \u003c 0.001 0.928  \u003c 0.001 0.873  \u003c 0.001 0.921  \u003c 0.001 0.899   \u003c 0.001\n11 0.924  \u003c 0.001 0.845  \u003c 0.001 0.925  \u003c 0.001 0.786  \u003c 0.001 0.917  \u003c 0.001 0.875  \u003c 0.001\n12 0.857  \u003c 0.001 0.818  \u003c 0.001 0.933   \u003c 0.001 0.715  \u003c 0.001 0.944   \u003c 0.001 0.875  \u003c 0.001\n13 0.815  \u003c 0.001 0.762  \u003c 0.001 0.908  \u003c 0.001 0.609 0.001 0.916  \u003c 0.001 0.812  \u003c 0.001\n14 0.783  \u003c 0.001 0.697 \u003c 0.001 0.858  \u003c 0.001 0.496 0.007 0.885  \u003c 0.001 0.733  \u003c 0.001\nNew suspected cases 0 −0.003 0.989 −0.372 0.073 −0.309 0.142 −0.091 0.671 −0.279 0.187 −0.309 0.142\n1 0.246 0.246 −0.116 0.590 −0.068 0.753 0.141 0.511 −0.078 0.716 −0.103 0.630\n2 0.413 0.045 0.104 0.630 0.125 0.560 0.346 0.098 0.089 0.680 0.050 0.818\n3 0.614 0.001 0.312 0.138 0.352 0.091 0.551 0.005 0.253 0.233 0.248 0.243\n4 0.768  \u003c 0.001 0.514 0.010 0.538 0.007 0.697 \u003c 0.001 0.431 0.035 0.383 0.065\n5 0.832  \u003c 0.001 0.687 \u003c 0.001 0.670 \u003c 0.001 0.816  \u003c 0.001 0.520 0.009 0.501 0.013\n6 0.912   \u003c 0.001 0.771  \u003c 0.001 0.725  \u003c 0.001 0.895  \u003c 0.001 0.672 \u003c 0.001 0.670 \u003c 0.001\n7 0.933  \u003c 0.001 0.850  \u003c 0.001 0.830  \u003c 0.001 0.914  \u003c 0.001 0.813  \u003c 0.001 0.872  \u003c 0.001\n8 0.875  \u003c 0.001 0.960   \u003c 0.001 0.906   \u003c 0.001 0.926   \u003c 0.001 0.924   \u003c 0.001 0.907   \u003c 0.001\n9 0.787  \u003c 0.001 0.865  \u003c 0.001 0.882  \u003c 0.001 0.850  \u003c 0.001 0.883  \u003c 0.001 0.899  \u003c 0.001\n10 0.744  \u003c 0.001 0.827  \u003c 0.001 0.841  \u003c 0.001 0.766  \u003c 0.001 0.818  \u003c 0.001 0.832  \u003c 0.001\n11 0.671 \u003c 0.001 0.770  \u003c 0.001 0.790  \u003c 0.001 0.698 \u003c 0.001 0.781  \u003c 0.001 0.802  \u003c 0.001\n12 0.544 0.006 0.693 \u003c 0.001 0.686 \u003c 0.001 0.559 0.005 0.697 \u003c 0.001 0.683 \u003c 0.001\n13 0.482 0.017 0.578 0.003 0.583 0.003 0.454 0.026 0.622 0.001 0.600 0.002\n14 0.497 0.013 0.448 0.028 0.547 0.006 0.288 0.173 0.609 0.002 0.550 0.005\nShaded text: high correlation with r \u003e 0.7. Text in italics: highest correlation. For new laboratory-confirmed cases, the highest correlation was found 9, 12 and 12 days earlier for searches for the keyword ‘coronavirus’ in Google Trends, Baidu Index and Sina Weibo Index with, respectively, r = 0.958, 0.933 and 0.944. For the keyword ‘pneumonia’, the highest correlation was found 10, 8 and 10 days earlier in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.893, 0.944 and 0.899, respectively.\nThe lag correlation of new suspected cases was similar to the laboratory-confirmed cases, with a shorter lag time. The highest correlation was found 6, 8 and 8 days earlier for searches for the keyword ‘coronavirus’ in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.912, 0.906 and 0.924, respectively. For the keyword ‘pneumonia’, the highest correlation was found all 8 days earlier in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.960, 0.926 and 0.907, respectively."}

    LitCovid-sentences

    {"project":"LitCovid-sentences","denotations":[{"id":"T27","span":{"begin":0,"end":88},"obj":"Sentence"},{"id":"T28","span":{"begin":89,"end":340},"obj":"Sentence"},{"id":"T29","span":{"begin":341,"end":508},"obj":"Sentence"},{"id":"T30","span":{"begin":509,"end":740},"obj":"Sentence"},{"id":"T31","span":{"begin":741,"end":908},"obj":"Sentence"},{"id":"T32","span":{"begin":909,"end":967},"obj":"Sentence"},{"id":"T33","span":{"begin":968,"end":1056},"obj":"Sentence"},{"id":"T34","span":{"begin":1057,"end":1175},"obj":"Sentence"},{"id":"T35","span":{"begin":1176,"end":1261},"obj":"Sentence"},{"id":"T36","span":{"begin":1262,"end":1347},"obj":"Sentence"},{"id":"T37","span":{"begin":1348,"end":1433},"obj":"Sentence"},{"id":"T38","span":{"begin":1434,"end":1523},"obj":"Sentence"},{"id":"T39","span":{"begin":1524,"end":1617},"obj":"Sentence"},{"id":"T40","span":{"begin":1618,"end":1719},"obj":"Sentence"},{"id":"T41","span":{"begin":1720,"end":1823},"obj":"Sentence"},{"id":"T42","span":{"begin":1824,"end":1930},"obj":"Sentence"},{"id":"T43","span":{"begin":1931,"end":2037},"obj":"Sentence"},{"id":"T44","span":{"begin":2038,"end":2148},"obj":"Sentence"},{"id":"T45","span":{"begin":2149,"end":2253},"obj":"Sentence"},{"id":"T46","span":{"begin":2254,"end":2364},"obj":"Sentence"},{"id":"T47","span":{"begin":2365,"end":2466},"obj":"Sentence"},{"id":"T48","span":{"begin":2467,"end":2567},"obj":"Sentence"},{"id":"T49","span":{"begin":2568,"end":2680},"obj":"Sentence"},{"id":"T50","span":{"begin":2681,"end":2770},"obj":"Sentence"},{"id":"T51","span":{"begin":2771,"end":2856},"obj":"Sentence"},{"id":"T52","span":{"begin":2857,"end":2942},"obj":"Sentence"},{"id":"T53","span":{"begin":2943,"end":3033},"obj":"Sentence"},{"id":"T54","span":{"begin":3034,"end":3129},"obj":"Sentence"},{"id":"T55","span":{"begin":3130,"end":3234},"obj":"Sentence"},{"id":"T56","span":{"begin":3235,"end":3338},"obj":"Sentence"},{"id":"T57","span":{"begin":3339,"end":3457},"obj":"Sentence"},{"id":"T58","span":{"begin":3458,"end":3561},"obj":"Sentence"},{"id":"T59","span":{"begin":3562,"end":3666},"obj":"Sentence"},{"id":"T60","span":{"begin":3667,"end":3769},"obj":"Sentence"},{"id":"T61","span":{"begin":3770,"end":3864},"obj":"Sentence"},{"id":"T62","span":{"begin":3865,"end":3951},"obj":"Sentence"},{"id":"T63","span":{"begin":3952,"end":4038},"obj":"Sentence"},{"id":"T64","span":{"begin":4039,"end":4082},"obj":"Sentence"},{"id":"T65","span":{"begin":4083,"end":4120},"obj":"Sentence"},{"id":"T66","span":{"begin":4121,"end":4358},"obj":"Sentence"},{"id":"T67","span":{"begin":4359,"end":4546},"obj":"Sentence"},{"id":"T68","span":{"begin":4547,"end":4661},"obj":"Sentence"},{"id":"T69","span":{"begin":4662,"end":4861},"obj":"Sentence"},{"id":"T70","span":{"begin":4862,"end":5042},"obj":"Sentence"}],"namespaces":[{"prefix":"_base","uri":"http://pubannotation.org/ontology/tao.owl#"}],"text":"Lag correlation between daily laboratory-confirmed/suspected cases and Internet searches\nFigure 2 and the Table showed the lag Spearman correlations between the daily new laboratory-confirmed cases (upper panel) and suspected cases (lower panel) of COVID-19 and the Internet search data from Google Trends, Baidu Index and Sina Weibo Index. We found a high correlation with the Internet search data (r \u003e 0.7) 8–10 days earlier for new laboratory-confirmed cases, and 5-7 days earlier for new suspected cases.\nFigure 2 Lag correlations between new laboratory-confirmed cases and suspected cases of COVID-19 and data from Google Trends, Baidu Index and Weibo Index for the keywords ‘coronavirus’ and ‘pneumonia’, China, January–February 2020\nTable Lag correlation coefficients and p values between Internet search data and daily new laboratory-confirmed/suspected COVID-19 cases, China, January–February 2020\nDays earlier Google Trends Baidu Index Sina Weibo Index\nCoronavirus p Pneumonia p Coronavirus p Pneumonia p Coronavirus p Pneumonia p\nNew laboratory-confirmed cases 0 0.176 0.370 −0.035 0.861 0.021 0.917 0.129 0.513 0.106 0.593 0.109 0.582\n1 0.324 0.093 0.122 0.537 0.160 0.416 0.265 0.172 0.202 0.303 0.190 0.332\n2 0.455 0.015 0.271 0.164 0.299 0.122 0.411 0.030 0.346 0.072 0.298 0.123\n3 0.561 0.002 0.388 0.041 0.406 0.032 0.516 0.005 0.431 0.022 0.408 0.031\n4 0.672 \u003c 0.001 0.505 0.006 0.529 0.004 0.641 \u003c 0.001 0.498 0.007 0.470 0.012\n5 0.779  \u003c 0.001 0.606 0.001 0.624 \u003c 0.001 0.722  \u003c 0.001 0.562 0.002 0.553 0.002\n6 0.850  \u003c 0.001 0.712  \u003c 0.001 0.706  \u003c 0.001 0.808  \u003c 0.001 0.679 \u003c 0.001 0.668 \u003c 0.001\n7 0.902  \u003c 0.001 0.777  \u003c 0.001 0.750  \u003c 0.001 0.861  \u003c 0.001 0.751  \u003c 0.001 0.754  \u003c 0.001\n8 0.944  \u003c 0.001 0.835  \u003c 0.001 0.823  \u003c 0.001 0.902   \u003c 0.001 0.829  \u003c 0.001 0.817  \u003c 0.001\n9 0.958   \u003c 0.001 0.878  \u003c 0.001 0.887  \u003c 0.001 0.892  \u003c 0.001 0.876  \u003c 0.001 0.872  \u003c 0.001\n10 0.953  \u003c 0.001 0.893   \u003c 0.001 0.928  \u003c 0.001 0.873  \u003c 0.001 0.921  \u003c 0.001 0.899   \u003c 0.001\n11 0.924  \u003c 0.001 0.845  \u003c 0.001 0.925  \u003c 0.001 0.786  \u003c 0.001 0.917  \u003c 0.001 0.875  \u003c 0.001\n12 0.857  \u003c 0.001 0.818  \u003c 0.001 0.933   \u003c 0.001 0.715  \u003c 0.001 0.944   \u003c 0.001 0.875  \u003c 0.001\n13 0.815  \u003c 0.001 0.762  \u003c 0.001 0.908  \u003c 0.001 0.609 0.001 0.916  \u003c 0.001 0.812  \u003c 0.001\n14 0.783  \u003c 0.001 0.697 \u003c 0.001 0.858  \u003c 0.001 0.496 0.007 0.885  \u003c 0.001 0.733  \u003c 0.001\nNew suspected cases 0 −0.003 0.989 −0.372 0.073 −0.309 0.142 −0.091 0.671 −0.279 0.187 −0.309 0.142\n1 0.246 0.246 −0.116 0.590 −0.068 0.753 0.141 0.511 −0.078 0.716 −0.103 0.630\n2 0.413 0.045 0.104 0.630 0.125 0.560 0.346 0.098 0.089 0.680 0.050 0.818\n3 0.614 0.001 0.312 0.138 0.352 0.091 0.551 0.005 0.253 0.233 0.248 0.243\n4 0.768  \u003c 0.001 0.514 0.010 0.538 0.007 0.697 \u003c 0.001 0.431 0.035 0.383 0.065\n5 0.832  \u003c 0.001 0.687 \u003c 0.001 0.670 \u003c 0.001 0.816  \u003c 0.001 0.520 0.009 0.501 0.013\n6 0.912   \u003c 0.001 0.771  \u003c 0.001 0.725  \u003c 0.001 0.895  \u003c 0.001 0.672 \u003c 0.001 0.670 \u003c 0.001\n7 0.933  \u003c 0.001 0.850  \u003c 0.001 0.830  \u003c 0.001 0.914  \u003c 0.001 0.813  \u003c 0.001 0.872  \u003c 0.001\n8 0.875  \u003c 0.001 0.960   \u003c 0.001 0.906   \u003c 0.001 0.926   \u003c 0.001 0.924   \u003c 0.001 0.907   \u003c 0.001\n9 0.787  \u003c 0.001 0.865  \u003c 0.001 0.882  \u003c 0.001 0.850  \u003c 0.001 0.883  \u003c 0.001 0.899  \u003c 0.001\n10 0.744  \u003c 0.001 0.827  \u003c 0.001 0.841  \u003c 0.001 0.766  \u003c 0.001 0.818  \u003c 0.001 0.832  \u003c 0.001\n11 0.671 \u003c 0.001 0.770  \u003c 0.001 0.790  \u003c 0.001 0.698 \u003c 0.001 0.781  \u003c 0.001 0.802  \u003c 0.001\n12 0.544 0.006 0.693 \u003c 0.001 0.686 \u003c 0.001 0.559 0.005 0.697 \u003c 0.001 0.683 \u003c 0.001\n13 0.482 0.017 0.578 0.003 0.583 0.003 0.454 0.026 0.622 0.001 0.600 0.002\n14 0.497 0.013 0.448 0.028 0.547 0.006 0.288 0.173 0.609 0.002 0.550 0.005\nShaded text: high correlation with r \u003e 0.7. Text in italics: highest correlation. For new laboratory-confirmed cases, the highest correlation was found 9, 12 and 12 days earlier for searches for the keyword ‘coronavirus’ in Google Trends, Baidu Index and Sina Weibo Index with, respectively, r = 0.958, 0.933 and 0.944. For the keyword ‘pneumonia’, the highest correlation was found 10, 8 and 10 days earlier in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.893, 0.944 and 0.899, respectively.\nThe lag correlation of new suspected cases was similar to the laboratory-confirmed cases, with a shorter lag time. The highest correlation was found 6, 8 and 8 days earlier for searches for the keyword ‘coronavirus’ in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.912, 0.906 and 0.924, respectively. For the keyword ‘pneumonia’, the highest correlation was found all 8 days earlier in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.960, 0.926 and 0.907, respectively."}

    LitCovid-PD-HP

    {"project":"LitCovid-PD-HP","denotations":[{"id":"T9","span":{"begin":700,"end":709},"obj":"Phenotype"},{"id":"T10","span":{"begin":984,"end":993},"obj":"Phenotype"},{"id":"T11","span":{"begin":1014,"end":1023},"obj":"Phenotype"},{"id":"T12","span":{"begin":1044,"end":1053},"obj":"Phenotype"},{"id":"T13","span":{"begin":4376,"end":4385},"obj":"Phenotype"},{"id":"T14","span":{"begin":4879,"end":4888},"obj":"Phenotype"}],"attributes":[{"id":"A9","pred":"hp_id","subj":"T9","obj":"http://purl.obolibrary.org/obo/HP_0002090"},{"id":"A10","pred":"hp_id","subj":"T10","obj":"http://purl.obolibrary.org/obo/HP_0002090"},{"id":"A11","pred":"hp_id","subj":"T11","obj":"http://purl.obolibrary.org/obo/HP_0002090"},{"id":"A12","pred":"hp_id","subj":"T12","obj":"http://purl.obolibrary.org/obo/HP_0002090"},{"id":"A13","pred":"hp_id","subj":"T13","obj":"http://purl.obolibrary.org/obo/HP_0002090"},{"id":"A14","pred":"hp_id","subj":"T14","obj":"http://purl.obolibrary.org/obo/HP_0002090"}],"text":"Lag correlation between daily laboratory-confirmed/suspected cases and Internet searches\nFigure 2 and the Table showed the lag Spearman correlations between the daily new laboratory-confirmed cases (upper panel) and suspected cases (lower panel) of COVID-19 and the Internet search data from Google Trends, Baidu Index and Sina Weibo Index. We found a high correlation with the Internet search data (r \u003e 0.7) 8–10 days earlier for new laboratory-confirmed cases, and 5-7 days earlier for new suspected cases.\nFigure 2 Lag correlations between new laboratory-confirmed cases and suspected cases of COVID-19 and data from Google Trends, Baidu Index and Weibo Index for the keywords ‘coronavirus’ and ‘pneumonia’, China, January–February 2020\nTable Lag correlation coefficients and p values between Internet search data and daily new laboratory-confirmed/suspected COVID-19 cases, China, January–February 2020\nDays earlier Google Trends Baidu Index Sina Weibo Index\nCoronavirus p Pneumonia p Coronavirus p Pneumonia p Coronavirus p Pneumonia p\nNew laboratory-confirmed cases 0 0.176 0.370 −0.035 0.861 0.021 0.917 0.129 0.513 0.106 0.593 0.109 0.582\n1 0.324 0.093 0.122 0.537 0.160 0.416 0.265 0.172 0.202 0.303 0.190 0.332\n2 0.455 0.015 0.271 0.164 0.299 0.122 0.411 0.030 0.346 0.072 0.298 0.123\n3 0.561 0.002 0.388 0.041 0.406 0.032 0.516 0.005 0.431 0.022 0.408 0.031\n4 0.672 \u003c 0.001 0.505 0.006 0.529 0.004 0.641 \u003c 0.001 0.498 0.007 0.470 0.012\n5 0.779  \u003c 0.001 0.606 0.001 0.624 \u003c 0.001 0.722  \u003c 0.001 0.562 0.002 0.553 0.002\n6 0.850  \u003c 0.001 0.712  \u003c 0.001 0.706  \u003c 0.001 0.808  \u003c 0.001 0.679 \u003c 0.001 0.668 \u003c 0.001\n7 0.902  \u003c 0.001 0.777  \u003c 0.001 0.750  \u003c 0.001 0.861  \u003c 0.001 0.751  \u003c 0.001 0.754  \u003c 0.001\n8 0.944  \u003c 0.001 0.835  \u003c 0.001 0.823  \u003c 0.001 0.902   \u003c 0.001 0.829  \u003c 0.001 0.817  \u003c 0.001\n9 0.958   \u003c 0.001 0.878  \u003c 0.001 0.887  \u003c 0.001 0.892  \u003c 0.001 0.876  \u003c 0.001 0.872  \u003c 0.001\n10 0.953  \u003c 0.001 0.893   \u003c 0.001 0.928  \u003c 0.001 0.873  \u003c 0.001 0.921  \u003c 0.001 0.899   \u003c 0.001\n11 0.924  \u003c 0.001 0.845  \u003c 0.001 0.925  \u003c 0.001 0.786  \u003c 0.001 0.917  \u003c 0.001 0.875  \u003c 0.001\n12 0.857  \u003c 0.001 0.818  \u003c 0.001 0.933   \u003c 0.001 0.715  \u003c 0.001 0.944   \u003c 0.001 0.875  \u003c 0.001\n13 0.815  \u003c 0.001 0.762  \u003c 0.001 0.908  \u003c 0.001 0.609 0.001 0.916  \u003c 0.001 0.812  \u003c 0.001\n14 0.783  \u003c 0.001 0.697 \u003c 0.001 0.858  \u003c 0.001 0.496 0.007 0.885  \u003c 0.001 0.733  \u003c 0.001\nNew suspected cases 0 −0.003 0.989 −0.372 0.073 −0.309 0.142 −0.091 0.671 −0.279 0.187 −0.309 0.142\n1 0.246 0.246 −0.116 0.590 −0.068 0.753 0.141 0.511 −0.078 0.716 −0.103 0.630\n2 0.413 0.045 0.104 0.630 0.125 0.560 0.346 0.098 0.089 0.680 0.050 0.818\n3 0.614 0.001 0.312 0.138 0.352 0.091 0.551 0.005 0.253 0.233 0.248 0.243\n4 0.768  \u003c 0.001 0.514 0.010 0.538 0.007 0.697 \u003c 0.001 0.431 0.035 0.383 0.065\n5 0.832  \u003c 0.001 0.687 \u003c 0.001 0.670 \u003c 0.001 0.816  \u003c 0.001 0.520 0.009 0.501 0.013\n6 0.912   \u003c 0.001 0.771  \u003c 0.001 0.725  \u003c 0.001 0.895  \u003c 0.001 0.672 \u003c 0.001 0.670 \u003c 0.001\n7 0.933  \u003c 0.001 0.850  \u003c 0.001 0.830  \u003c 0.001 0.914  \u003c 0.001 0.813  \u003c 0.001 0.872  \u003c 0.001\n8 0.875  \u003c 0.001 0.960   \u003c 0.001 0.906   \u003c 0.001 0.926   \u003c 0.001 0.924   \u003c 0.001 0.907   \u003c 0.001\n9 0.787  \u003c 0.001 0.865  \u003c 0.001 0.882  \u003c 0.001 0.850  \u003c 0.001 0.883  \u003c 0.001 0.899  \u003c 0.001\n10 0.744  \u003c 0.001 0.827  \u003c 0.001 0.841  \u003c 0.001 0.766  \u003c 0.001 0.818  \u003c 0.001 0.832  \u003c 0.001\n11 0.671 \u003c 0.001 0.770  \u003c 0.001 0.790  \u003c 0.001 0.698 \u003c 0.001 0.781  \u003c 0.001 0.802  \u003c 0.001\n12 0.544 0.006 0.693 \u003c 0.001 0.686 \u003c 0.001 0.559 0.005 0.697 \u003c 0.001 0.683 \u003c 0.001\n13 0.482 0.017 0.578 0.003 0.583 0.003 0.454 0.026 0.622 0.001 0.600 0.002\n14 0.497 0.013 0.448 0.028 0.547 0.006 0.288 0.173 0.609 0.002 0.550 0.005\nShaded text: high correlation with r \u003e 0.7. Text in italics: highest correlation. For new laboratory-confirmed cases, the highest correlation was found 9, 12 and 12 days earlier for searches for the keyword ‘coronavirus’ in Google Trends, Baidu Index and Sina Weibo Index with, respectively, r = 0.958, 0.933 and 0.944. For the keyword ‘pneumonia’, the highest correlation was found 10, 8 and 10 days earlier in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.893, 0.944 and 0.899, respectively.\nThe lag correlation of new suspected cases was similar to the laboratory-confirmed cases, with a shorter lag time. The highest correlation was found 6, 8 and 8 days earlier for searches for the keyword ‘coronavirus’ in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.912, 0.906 and 0.924, respectively. For the keyword ‘pneumonia’, the highest correlation was found all 8 days earlier in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.960, 0.926 and 0.907, respectively."}

    LitCovid-PubTator

    {"project":"LitCovid-PubTator","denotations":[{"id":"72","span":{"begin":323,"end":327},"obj":"Species"},{"id":"73","span":{"begin":249,"end":257},"obj":"Disease"},{"id":"77","span":{"begin":682,"end":693},"obj":"Species"},{"id":"78","span":{"begin":598,"end":606},"obj":"Disease"},{"id":"79","span":{"begin":700,"end":709},"obj":"Disease"},{"id":"82","span":{"begin":951,"end":955},"obj":"Species"},{"id":"83","span":{"begin":968,"end":1053},"obj":"Disease"},{"id":"85","span":{"begin":864,"end":872},"obj":"Disease"},{"id":"90","span":{"begin":4247,"end":4258},"obj":"Species"},{"id":"91","span":{"begin":4294,"end":4298},"obj":"Species"},{"id":"92","span":{"begin":4482,"end":4486},"obj":"Species"},{"id":"93","span":{"begin":4376,"end":4385},"obj":"Disease"},{"id":"98","span":{"begin":4750,"end":4761},"obj":"Species"},{"id":"99","span":{"begin":4797,"end":4801},"obj":"Species"},{"id":"100","span":{"begin":4978,"end":4982},"obj":"Species"},{"id":"101","span":{"begin":4879,"end":4888},"obj":"Disease"}],"attributes":[{"id":"A72","pred":"tao:has_database_id","subj":"72","obj":"Tax:647292"},{"id":"A73","pred":"tao:has_database_id","subj":"73","obj":"MESH:C000657245"},{"id":"A77","pred":"tao:has_database_id","subj":"77","obj":"Tax:11118"},{"id":"A78","pred":"tao:has_database_id","subj":"78","obj":"MESH:C000657245"},{"id":"A79","pred":"tao:has_database_id","subj":"79","obj":"MESH:D011014"},{"id":"A82","pred":"tao:has_database_id","subj":"82","obj":"Tax:647292"},{"id":"A83","pred":"tao:has_database_id","subj":"83","obj":"MESH:D018352"},{"id":"A85","pred":"tao:has_database_id","subj":"85","obj":"MESH:C000657245"},{"id":"A90","pred":"tao:has_database_id","subj":"90","obj":"Tax:11118"},{"id":"A91","pred":"tao:has_database_id","subj":"91","obj":"Tax:647292"},{"id":"A92","pred":"tao:has_database_id","subj":"92","obj":"Tax:647292"},{"id":"A93","pred":"tao:has_database_id","subj":"93","obj":"MESH:D011014"},{"id":"A98","pred":"tao:has_database_id","subj":"98","obj":"Tax:11118"},{"id":"A99","pred":"tao:has_database_id","subj":"99","obj":"Tax:647292"},{"id":"A100","pred":"tao:has_database_id","subj":"100","obj":"Tax:647292"},{"id":"A101","pred":"tao:has_database_id","subj":"101","obj":"MESH:D011014"}],"namespaces":[{"prefix":"Tax","uri":"https://www.ncbi.nlm.nih.gov/taxonomy/"},{"prefix":"MESH","uri":"https://id.nlm.nih.gov/mesh/"},{"prefix":"Gene","uri":"https://www.ncbi.nlm.nih.gov/gene/"},{"prefix":"CVCL","uri":"https://web.expasy.org/cellosaurus/CVCL_"}],"text":"Lag correlation between daily laboratory-confirmed/suspected cases and Internet searches\nFigure 2 and the Table showed the lag Spearman correlations between the daily new laboratory-confirmed cases (upper panel) and suspected cases (lower panel) of COVID-19 and the Internet search data from Google Trends, Baidu Index and Sina Weibo Index. We found a high correlation with the Internet search data (r \u003e 0.7) 8–10 days earlier for new laboratory-confirmed cases, and 5-7 days earlier for new suspected cases.\nFigure 2 Lag correlations between new laboratory-confirmed cases and suspected cases of COVID-19 and data from Google Trends, Baidu Index and Weibo Index for the keywords ‘coronavirus’ and ‘pneumonia’, China, January–February 2020\nTable Lag correlation coefficients and p values between Internet search data and daily new laboratory-confirmed/suspected COVID-19 cases, China, January–February 2020\nDays earlier Google Trends Baidu Index Sina Weibo Index\nCoronavirus p Pneumonia p Coronavirus p Pneumonia p Coronavirus p Pneumonia p\nNew laboratory-confirmed cases 0 0.176 0.370 −0.035 0.861 0.021 0.917 0.129 0.513 0.106 0.593 0.109 0.582\n1 0.324 0.093 0.122 0.537 0.160 0.416 0.265 0.172 0.202 0.303 0.190 0.332\n2 0.455 0.015 0.271 0.164 0.299 0.122 0.411 0.030 0.346 0.072 0.298 0.123\n3 0.561 0.002 0.388 0.041 0.406 0.032 0.516 0.005 0.431 0.022 0.408 0.031\n4 0.672 \u003c 0.001 0.505 0.006 0.529 0.004 0.641 \u003c 0.001 0.498 0.007 0.470 0.012\n5 0.779  \u003c 0.001 0.606 0.001 0.624 \u003c 0.001 0.722  \u003c 0.001 0.562 0.002 0.553 0.002\n6 0.850  \u003c 0.001 0.712  \u003c 0.001 0.706  \u003c 0.001 0.808  \u003c 0.001 0.679 \u003c 0.001 0.668 \u003c 0.001\n7 0.902  \u003c 0.001 0.777  \u003c 0.001 0.750  \u003c 0.001 0.861  \u003c 0.001 0.751  \u003c 0.001 0.754  \u003c 0.001\n8 0.944  \u003c 0.001 0.835  \u003c 0.001 0.823  \u003c 0.001 0.902   \u003c 0.001 0.829  \u003c 0.001 0.817  \u003c 0.001\n9 0.958   \u003c 0.001 0.878  \u003c 0.001 0.887  \u003c 0.001 0.892  \u003c 0.001 0.876  \u003c 0.001 0.872  \u003c 0.001\n10 0.953  \u003c 0.001 0.893   \u003c 0.001 0.928  \u003c 0.001 0.873  \u003c 0.001 0.921  \u003c 0.001 0.899   \u003c 0.001\n11 0.924  \u003c 0.001 0.845  \u003c 0.001 0.925  \u003c 0.001 0.786  \u003c 0.001 0.917  \u003c 0.001 0.875  \u003c 0.001\n12 0.857  \u003c 0.001 0.818  \u003c 0.001 0.933   \u003c 0.001 0.715  \u003c 0.001 0.944   \u003c 0.001 0.875  \u003c 0.001\n13 0.815  \u003c 0.001 0.762  \u003c 0.001 0.908  \u003c 0.001 0.609 0.001 0.916  \u003c 0.001 0.812  \u003c 0.001\n14 0.783  \u003c 0.001 0.697 \u003c 0.001 0.858  \u003c 0.001 0.496 0.007 0.885  \u003c 0.001 0.733  \u003c 0.001\nNew suspected cases 0 −0.003 0.989 −0.372 0.073 −0.309 0.142 −0.091 0.671 −0.279 0.187 −0.309 0.142\n1 0.246 0.246 −0.116 0.590 −0.068 0.753 0.141 0.511 −0.078 0.716 −0.103 0.630\n2 0.413 0.045 0.104 0.630 0.125 0.560 0.346 0.098 0.089 0.680 0.050 0.818\n3 0.614 0.001 0.312 0.138 0.352 0.091 0.551 0.005 0.253 0.233 0.248 0.243\n4 0.768  \u003c 0.001 0.514 0.010 0.538 0.007 0.697 \u003c 0.001 0.431 0.035 0.383 0.065\n5 0.832  \u003c 0.001 0.687 \u003c 0.001 0.670 \u003c 0.001 0.816  \u003c 0.001 0.520 0.009 0.501 0.013\n6 0.912   \u003c 0.001 0.771  \u003c 0.001 0.725  \u003c 0.001 0.895  \u003c 0.001 0.672 \u003c 0.001 0.670 \u003c 0.001\n7 0.933  \u003c 0.001 0.850  \u003c 0.001 0.830  \u003c 0.001 0.914  \u003c 0.001 0.813  \u003c 0.001 0.872  \u003c 0.001\n8 0.875  \u003c 0.001 0.960   \u003c 0.001 0.906   \u003c 0.001 0.926   \u003c 0.001 0.924   \u003c 0.001 0.907   \u003c 0.001\n9 0.787  \u003c 0.001 0.865  \u003c 0.001 0.882  \u003c 0.001 0.850  \u003c 0.001 0.883  \u003c 0.001 0.899  \u003c 0.001\n10 0.744  \u003c 0.001 0.827  \u003c 0.001 0.841  \u003c 0.001 0.766  \u003c 0.001 0.818  \u003c 0.001 0.832  \u003c 0.001\n11 0.671 \u003c 0.001 0.770  \u003c 0.001 0.790  \u003c 0.001 0.698 \u003c 0.001 0.781  \u003c 0.001 0.802  \u003c 0.001\n12 0.544 0.006 0.693 \u003c 0.001 0.686 \u003c 0.001 0.559 0.005 0.697 \u003c 0.001 0.683 \u003c 0.001\n13 0.482 0.017 0.578 0.003 0.583 0.003 0.454 0.026 0.622 0.001 0.600 0.002\n14 0.497 0.013 0.448 0.028 0.547 0.006 0.288 0.173 0.609 0.002 0.550 0.005\nShaded text: high correlation with r \u003e 0.7. Text in italics: highest correlation. For new laboratory-confirmed cases, the highest correlation was found 9, 12 and 12 days earlier for searches for the keyword ‘coronavirus’ in Google Trends, Baidu Index and Sina Weibo Index with, respectively, r = 0.958, 0.933 and 0.944. For the keyword ‘pneumonia’, the highest correlation was found 10, 8 and 10 days earlier in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.893, 0.944 and 0.899, respectively.\nThe lag correlation of new suspected cases was similar to the laboratory-confirmed cases, with a shorter lag time. The highest correlation was found 6, 8 and 8 days earlier for searches for the keyword ‘coronavirus’ in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.912, 0.906 and 0.924, respectively. For the keyword ‘pneumonia’, the highest correlation was found all 8 days earlier in Google Trends, Baidu Index and Sina Weibo Index, with r = 0.960, 0.926 and 0.907, respectively."}