> top > docs > PMC:7074654 > spans > 932-7421 > annotations

PMC:7074654 / 932-7421 JSONTXT

Annnotations TAB JSON ListView MergeView

LitCovid-PubTator

Id Subject Object Predicate Lexical cue tao:has_database_id
28 111-122 Species denotes coronavirus Tax:11118
29 327-335 Disease denotes COVID-19 MESH:C000657245
42 641-647 Disease denotes Joseph MESH:D017827
43 2487-2491 Disease denotes SARS MESH:D045169
44 2825-2829 Disease denotes SARS MESH:D045169
45 3569-3573 Disease denotes SARS MESH:D045169
46 3578-3582 Disease denotes MERS MESH:D018352
47 4123-4127 Disease denotes SARS MESH:D045169
48 4165-4169 Disease denotes MERS MESH:D018352
49 4457-4461 Disease denotes SARS MESH:D045169
50 4499-4503 Disease denotes MERS MESH:D018352
51 4802-4806 Disease denotes SARS MESH:D045169
52 4887-4891 Disease denotes SARS MESH:D045169
53 4962-4970 Disease denotes zoonotic MESH:D015047
55 5806-5815 Species denotes 2019-nCoV Tax:2697049

LitCovid-PMC-OGER-BB

Id Subject Object Predicate Lexical cue
T33 535-544 SP_7 denotes 2019-nCoV
T32 5806-5815 SP_7 denotes 2019-nCoV
T31 5816-5821 NCBITaxon:10239 denotes virus
T23 111-122 NCBITaxon:11118 denotes coronavirus
T22 131-143 GO:0000003 denotes reproduction
T21 303-315 GO:0000003 denotes reproductive
T20 327-335 SP_7 denotes COVID-19

LitCovid-PD-FMA-UBERON

Id Subject Object Predicate Lexical cue fma_id
T1 993-1005 Body_part denotes compartments http://purl.org/sig/ont/fma/fma76577
T2 3770-3782 Body_part denotes compartments http://purl.org/sig/ont/fma/fma76577
T3 5449-5461 Body_part denotes compartments http://purl.org/sig/ont/fma/fma76577

LitCovid-PD-MONDO

Id Subject Object Predicate Lexical cue mondo_id
T12 327-335 Disease denotes COVID-19 http://purl.obolibrary.org/obo/MONDO_0100096
T13 1087-1097 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T14 2487-2491 Disease denotes SARS http://purl.obolibrary.org/obo/MONDO_0005091
T15 2825-2829 Disease denotes SARS http://purl.obolibrary.org/obo/MONDO_0005091
T16 3349-3359 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T17 3569-3573 Disease denotes SARS http://purl.obolibrary.org/obo/MONDO_0005091
T18 3803-3813 Disease denotes Infectious http://purl.obolibrary.org/obo/MONDO_0005550
T19 3930-3940 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T20 4123-4127 Disease denotes SARS http://purl.obolibrary.org/obo/MONDO_0005091
T21 4457-4461 Disease denotes SARS http://purl.obolibrary.org/obo/MONDO_0005091
T22 4802-4806 Disease denotes SARS http://purl.obolibrary.org/obo/MONDO_0005091
T23 4887-4891 Disease denotes SARS http://purl.obolibrary.org/obo/MONDO_0005091

LitCovid-PD-CLO

Id Subject Object Predicate Lexical cue
T9 424-425 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T10 440-441 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T11 821-830 http://purl.obolibrary.org/obo/UBERON_0001353 denotes posterior
T12 894-896 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T13 2946-2947 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T14 3085-3087 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T15 3267-3268 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T16 3663-3665 http://purl.obolibrary.org/obo/CLO_0050510 denotes 18
T17 3855-3858 http://purl.obolibrary.org/obo/CLO_0037127 denotes K 2
T18 4705-4707 http://purl.obolibrary.org/obo/CLO_0050510 denotes 18
T19 4885-4886 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T20 5132-5134 http://purl.obolibrary.org/obo/CLO_0050510 denotes 18
T21 5362-5364 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T22 5563-5565 http://purl.obolibrary.org/obo/CLO_0001022 denotes Li
T23 5563-5565 http://purl.obolibrary.org/obo/CLO_0007314 denotes Li
T24 5572-5574 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T25 5583-5585 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T26 5816-5821 http://purl.obolibrary.org/obo/NCBITaxon_10239 denotes virus
T27 6036-6037 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T28 6097-6098 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T29 6171-6172 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T30 6286-6287 http://purl.obolibrary.org/obo/CLO_0001020 denotes a

LitCovid-PD-CHEBI

Id Subject Object Predicate Lexical cue chebi_id
T1 1429-1433 Chemical denotes beta http://purl.obolibrary.org/obo/CHEBI_10545
T2 1683-1688 Chemical denotes alpha http://purl.obolibrary.org/obo/CHEBI_30216
T3 1937-1941 Chemical denotes beta http://purl.obolibrary.org/obo/CHEBI_10545
T4 2340-2345 Chemical denotes alpha http://purl.obolibrary.org/obo/CHEBI_30216
T5 2520-2522 Chemical denotes SD http://purl.obolibrary.org/obo/CHEBI_74807
T6 2858-2860 Chemical denotes SD http://purl.obolibrary.org/obo/CHEBI_74807
T7 4146-4148 Chemical denotes SD http://purl.obolibrary.org/obo/CHEBI_74807
T8 4188-4190 Chemical denotes SD http://purl.obolibrary.org/obo/CHEBI_74807
T9 4480-4482 Chemical denotes SD http://purl.obolibrary.org/obo/CHEBI_74807
T10 4522-4524 Chemical denotes SD http://purl.obolibrary.org/obo/CHEBI_74807
T11 5563-5565 Chemical denotes Li http://purl.obolibrary.org/obo/CHEBI_30145

LitCovid-PD-GO-BP

Id Subject Object Predicate Lexical cue
T3 131-143 http://purl.obolibrary.org/obo/GO_0000003 denotes reproduction
T4 2473-2479 http://purl.obolibrary.org/obo/GO_0040007 denotes Growth
T5 2585-2591 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T6 2697-2703 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T7 3968-3974 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T8 4073-4079 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T9 4283-4289 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T10 4407-4413 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T11 4617-4623 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T12 5624-5630 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T13 6410-6416 http://purl.obolibrary.org/obo/GO_0040007 denotes growth

LitCovid-sentences

Id Subject Object Predicate Lexical cue
T10 0-19 Sentence denotes Methods and Results
T11 20-100 Sentence denotes PubMed, bioRxiv and Google Scholar were accessed to search for eligible studies.
T12 101-161 Sentence denotes The term ‘coronavirus & basic reproduction number’ was used.
T13 162-229 Sentence denotes The time period covered was from 1 January 2020 to 7 February 2020.
T14 230-360 Sentence denotes For this time period, we identified 12 studies which estimated the basic reproductive number for COVID-19 from China and overseas.
T15 361-495 Sentence denotes Table 1 shows that the estimates ranged from 1.4 to 6.49, with a mean of 3.28, a median of 2.79 and interquartile range (IQR) of 1.16.
T16 496-544 Sentence denotes Table 1 Published estimates of R0 for 2019-nCoV
T17 545-640 Sentence denotes Study (study year) Location Study date Methods Approaches R 0 estimates (average) 95% CI
T18 641-860 Sentence denotes Joseph et al.1 Wuhan 31 December 2019–28 January 2020 Stochastic Markov Chain Monte Carlo methods (MCMC) MCMC methods with Gibbs sampling and non-informative flat prior, using posterior distribution 2.68 2.47–2.86
T19 861-2398 Sentence denotes Shen et al.2 Hubei province 12–22 January 2020 Mathematical model, dynamic compartmental model with population divided into five compartments: susceptible individuals, asymptomatic individuals during the incubation period, infectious individuals with symptoms, isolated individuals with treatment and recovered individuals R 0 = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\beta$\end{document}/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\beta$\end{document} = mean person-to-person transmission rate/day in the absence of control interventions, using nonlinear least squares method to get its point estimate\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha$\end{document} = isolation rate = 6 6.49 6.31–6.66
T20 2399-2725 Sentence denotes Liu et al.3 China and overseas 23 January 2020 Statistical exponential Growth, using SARS generation time = 8.4 days, SD = 3.8 days Applies Poisson regression to fit the exponential growth rateR0 = 1/M(−𝑟)M = moment generating function of the generation time distributionr = fitted exponential growth rate 2.90 2.32–3.63
T21 2726-3061 Sentence denotes Liu et al.3 China and overseas 23 January 2020 Statistical maximum likelihood estimation, using SARS generation time = 8.4 days, SD = 3.8 days Maximize log-likelihood to estimate R0 by using surveillance data during a disease epidemic, and assuming the secondary case is Poisson distribution with expected value R0 2.92 2.28–3.67
T22 3062-3394 Sentence denotes Read et al.4 China 1–22 January 2020 Mathematical transmission model assuming latent period = 4 days and near to the incubation period Assumes daily time increments with Poisson-distribution and apply a deterministic SEIR metapopulation transmission model, transmission rate = 1.94, infectious period =1.61 days 3.11 2.39–4.13
T23 3395-3650 Sentence denotes Majumder et al.5 Wuhan 8 December 2019 and 26 January 2020 Mathematical Incidence Decay and Exponential Adjustment (IDEA) model Adopted mean serial interval lengths from SARS and MERS ranging from 6 to 10 days to fit the IDEA model, 2.0–3.1 (2.55) /
T24 3651-3703 Sentence denotes WHO China 18 January 2020 / / 1.4–2.5 (1.95) /
T25 3704-4007 Sentence denotes Cao et al.6 China 23 January 2020 Mathematical model including compartments Susceptible-Exposed-Infectious-Recovered-Death-Cumulative (SEIRDC) R = K 2 (L × D) + K(L + D) + 1L = average latent period = 7,D = average latent infectious period = 9,K = logarithmic growth rate of the case counts 4.08 /
T26 4008-4341 Sentence denotes Zhao et al.7 China 10–24 January 2020 Statistical exponential growth model method adopting serial interval from SARS (mean = 8.4 days, SD = 3.8 days) and MERS (mean = 7.6 days, SD = 3.4 days) Corresponding to 8-fold increase in the reporting rateR0 = 1/M(−𝑟)𝑟 =intrinsic growth rateM = moment generating function 2.24 1.96–2.55
T27 4342-4675 Sentence denotes Zhao et al.7 China 10–24 January 2020 Statistical exponential growth model method adopting serial interval from SARS (mean = 8.4 days, SD = 3.8 days) and MERS (mean = 7.6 days, SD = 3.4 days) Corresponding to 2-fold increase in the reporting rateR0 = 1/M(−𝑟)𝑟 =intrinsic growth rateM = moment generating function 3.58 2.89–4.39
T28 4676-5090 Sentence denotes Imai (2020)8 Wuhan January 18, 2020 Mathematical model, computational modelling of potential epidemic trajectories Assume SARS-like levels of case-to-case variability in the numbers of secondary cases and a SARS-like generation time with 8.4 days, and set number of cases caused by zoonotic exposure and assumed total number of cases to estimate R0 values for best-case, median and worst-case 1.5–3.5 (2.5) /
T29 5091-5339 Sentence denotes Julien and Althaus9 China and overseas 18 January 2020 Stochastic simulations of early outbreak trajectories Stochastic simulations of early outbreak trajectories were performed that are consistent with the epidemiological findings to date 2.2
T30 5340-5558 Sentence denotes Tang et al.10 China 22 January 2020 Mathematical SEIR-type epidemiological model incorporates appropriate compartments corresponding to interventions Method-based method and Likelihood-based method 6.47 5.71–7.23
T31 5559-5718 Sentence denotes Qun Li et al.11 China 22 January 2020 Statistical exponential growth model Mean incubation period = 5.2 days, mean serial interval = 7.5 days 2.2 1.4–3.9
T32 5719-5733 Sentence denotes Averaged 3.28
T33 5734-5758 Sentence denotes CI, Confidence interval.
T34 5759-5902 Sentence denotes Figure 1 Timeline of the R0 estimates for the 2019-nCoV virus in China The first studies initially reported estimates of R0 with lower values.
T35 5903-6035 Sentence denotes Estimations subsequently increased and then again returned in the most recent estimates to the levels initially reported (Figure 1).
T36 6036-6104 Sentence denotes A closer look reveals that the estimation method used played a role.
T37 6105-6489 Sentence denotes The two studies using stochastic methods to estimate R0, reported a range of 2.2–2.68 with an average of 2.44.1,9 The six studies using mathematical methods to estimate R0 produced a range from 1.5 to 6.49, with an average of 4.2.2,4–6,8,10 The three studies using statistical methods such as exponential growth estimated an R0 ranging from 2.2 to 3.58, with an average of 2.67.3,7,11