> top > docs > PMC:7074654 > spans > 1428-6690 > annotations

PMC:7074654 / 1428-6690 JSONTXT

Annnotations TAB JSON ListView MergeView

LitCovid-PubTator

Id Subject Object Predicate Lexical cue tao:has_database_id
42 145-151 Disease denotes Joseph MESH:D017827
43 1991-1995 Disease denotes SARS MESH:D045169
44 2329-2333 Disease denotes SARS MESH:D045169
45 3073-3077 Disease denotes SARS MESH:D045169
46 3082-3086 Disease denotes MERS MESH:D018352
47 3627-3631 Disease denotes SARS MESH:D045169
48 3669-3673 Disease denotes MERS MESH:D018352
49 3961-3965 Disease denotes SARS MESH:D045169
50 4003-4007 Disease denotes MERS MESH:D018352
51 4306-4310 Disease denotes SARS MESH:D045169
52 4391-4395 Disease denotes SARS MESH:D045169
53 4466-4474 Disease denotes zoonotic MESH:D015047

LitCovid-PMC-OGER-BB

Id Subject Object Predicate Lexical cue
T33 39-48 SP_7 denotes 2019-nCoV

LitCovid-PD-FMA-UBERON

Id Subject Object Predicate Lexical cue fma_id
T1 497-509 Body_part denotes compartments http://purl.org/sig/ont/fma/fma76577
T2 3274-3286 Body_part denotes compartments http://purl.org/sig/ont/fma/fma76577
T3 4953-4965 Body_part denotes compartments http://purl.org/sig/ont/fma/fma76577

LitCovid-PD-MONDO

Id Subject Object Predicate Lexical cue mondo_id
T13 591-601 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T14 1991-1995 Disease denotes SARS http://purl.obolibrary.org/obo/MONDO_0005091
T15 2329-2333 Disease denotes SARS http://purl.obolibrary.org/obo/MONDO_0005091
T16 2853-2863 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T17 3073-3077 Disease denotes SARS http://purl.obolibrary.org/obo/MONDO_0005091
T18 3307-3317 Disease denotes Infectious http://purl.obolibrary.org/obo/MONDO_0005550
T19 3434-3444 Disease denotes infectious http://purl.obolibrary.org/obo/MONDO_0005550
T20 3627-3631 Disease denotes SARS http://purl.obolibrary.org/obo/MONDO_0005091
T21 3961-3965 Disease denotes SARS http://purl.obolibrary.org/obo/MONDO_0005091
T22 4306-4310 Disease denotes SARS http://purl.obolibrary.org/obo/MONDO_0005091
T23 4391-4395 Disease denotes SARS http://purl.obolibrary.org/obo/MONDO_0005091

LitCovid-PD-CLO

Id Subject Object Predicate Lexical cue
T11 325-334 http://purl.obolibrary.org/obo/UBERON_0001353 denotes posterior
T12 398-400 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T13 2450-2451 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T14 2589-2591 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T15 2771-2772 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T16 3167-3169 http://purl.obolibrary.org/obo/CLO_0050510 denotes 18
T17 3359-3362 http://purl.obolibrary.org/obo/CLO_0037127 denotes K 2
T18 4209-4211 http://purl.obolibrary.org/obo/CLO_0050510 denotes 18
T19 4389-4390 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T20 4636-4638 http://purl.obolibrary.org/obo/CLO_0050510 denotes 18
T21 4866-4868 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T22 5067-5069 http://purl.obolibrary.org/obo/CLO_0001022 denotes Li
T23 5067-5069 http://purl.obolibrary.org/obo/CLO_0007314 denotes Li
T24 5076-5078 http://purl.obolibrary.org/obo/CLO_0053733 denotes 11
T25 5087-5089 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22

LitCovid-PD-CHEBI

Id Subject Object Predicate Lexical cue chebi_id
T1 933-937 Chemical denotes beta http://purl.obolibrary.org/obo/CHEBI_10545
T2 1187-1192 Chemical denotes alpha http://purl.obolibrary.org/obo/CHEBI_30216
T3 1441-1445 Chemical denotes beta http://purl.obolibrary.org/obo/CHEBI_10545
T4 1844-1849 Chemical denotes alpha http://purl.obolibrary.org/obo/CHEBI_30216
T5 2024-2026 Chemical denotes SD http://purl.obolibrary.org/obo/CHEBI_74807
T6 2362-2364 Chemical denotes SD http://purl.obolibrary.org/obo/CHEBI_74807
T7 3650-3652 Chemical denotes SD http://purl.obolibrary.org/obo/CHEBI_74807
T8 3692-3694 Chemical denotes SD http://purl.obolibrary.org/obo/CHEBI_74807
T9 3984-3986 Chemical denotes SD http://purl.obolibrary.org/obo/CHEBI_74807
T10 4026-4028 Chemical denotes SD http://purl.obolibrary.org/obo/CHEBI_74807
T11 5067-5069 Chemical denotes Li http://purl.obolibrary.org/obo/CHEBI_30145

LitCovid-PD-GO-BP

Id Subject Object Predicate Lexical cue
T4 1977-1983 http://purl.obolibrary.org/obo/GO_0040007 denotes Growth
T5 2089-2095 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T6 2201-2207 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T7 3472-3478 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T8 3577-3583 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T9 3787-3793 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T10 3911-3917 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T11 4121-4127 http://purl.obolibrary.org/obo/GO_0040007 denotes growth
T12 5128-5134 http://purl.obolibrary.org/obo/GO_0040007 denotes growth

LitCovid-sentences

Id Subject Object Predicate Lexical cue
T16 0-48 Sentence denotes Table 1 Published estimates of R0 for 2019-nCoV
T17 49-144 Sentence denotes Study (study year) Location Study date Methods Approaches R 0 estimates (average) 95% CI
T18 145-364 Sentence denotes Joseph et al.1 Wuhan 31 December 2019–28 January 2020 Stochastic Markov Chain Monte Carlo methods (MCMC) MCMC methods with Gibbs sampling and non-informative flat prior, using posterior distribution 2.68 2.47–2.86
T19 365-1902 Sentence denotes Shen et al.2 Hubei province 12–22 January 2020 Mathematical model, dynamic compartmental model with population divided into five compartments: susceptible individuals, asymptomatic individuals during the incubation period, infectious individuals with symptoms, isolated individuals with treatment and recovered individuals R 0 = \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\beta$\end{document}/\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha$\end{document}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\beta$\end{document} = mean person-to-person transmission rate/day in the absence of control interventions, using nonlinear least squares method to get its point estimate\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} }{}$\alpha$\end{document} = isolation rate = 6 6.49 6.31–6.66
T20 1903-2229 Sentence denotes Liu et al.3 China and overseas 23 January 2020 Statistical exponential Growth, using SARS generation time = 8.4 days, SD = 3.8 days Applies Poisson regression to fit the exponential growth rateR0 = 1/M(−𝑟)M = moment generating function of the generation time distributionr = fitted exponential growth rate 2.90 2.32–3.63
T21 2230-2565 Sentence denotes Liu et al.3 China and overseas 23 January 2020 Statistical maximum likelihood estimation, using SARS generation time = 8.4 days, SD = 3.8 days Maximize log-likelihood to estimate R0 by using surveillance data during a disease epidemic, and assuming the secondary case is Poisson distribution with expected value R0 2.92 2.28–3.67
T22 2566-2898 Sentence denotes Read et al.4 China 1–22 January 2020 Mathematical transmission model assuming latent period = 4 days and near to the incubation period Assumes daily time increments with Poisson-distribution and apply a deterministic SEIR metapopulation transmission model, transmission rate = 1.94, infectious period =1.61 days 3.11 2.39–4.13
T23 2899-3154 Sentence denotes Majumder et al.5 Wuhan 8 December 2019 and 26 January 2020 Mathematical Incidence Decay and Exponential Adjustment (IDEA) model Adopted mean serial interval lengths from SARS and MERS ranging from 6 to 10 days to fit the IDEA model, 2.0–3.1 (2.55) /
T24 3155-3207 Sentence denotes WHO China 18 January 2020 / / 1.4–2.5 (1.95) /
T25 3208-3511 Sentence denotes Cao et al.6 China 23 January 2020 Mathematical model including compartments Susceptible-Exposed-Infectious-Recovered-Death-Cumulative (SEIRDC) R = K 2 (L × D) + K(L + D) + 1L = average latent period = 7,D = average latent infectious period = 9,K = logarithmic growth rate of the case counts 4.08 /
T26 3512-3845 Sentence denotes Zhao et al.7 China 10–24 January 2020 Statistical exponential growth model method adopting serial interval from SARS (mean = 8.4 days, SD = 3.8 days) and MERS (mean = 7.6 days, SD = 3.4 days) Corresponding to 8-fold increase in the reporting rateR0 = 1/M(−𝑟)𝑟 =intrinsic growth rateM = moment generating function 2.24 1.96–2.55
T27 3846-4179 Sentence denotes Zhao et al.7 China 10–24 January 2020 Statistical exponential growth model method adopting serial interval from SARS (mean = 8.4 days, SD = 3.8 days) and MERS (mean = 7.6 days, SD = 3.4 days) Corresponding to 2-fold increase in the reporting rateR0 = 1/M(−𝑟)𝑟 =intrinsic growth rateM = moment generating function 3.58 2.89–4.39
T28 4180-4594 Sentence denotes Imai (2020)8 Wuhan January 18, 2020 Mathematical model, computational modelling of potential epidemic trajectories Assume SARS-like levels of case-to-case variability in the numbers of secondary cases and a SARS-like generation time with 8.4 days, and set number of cases caused by zoonotic exposure and assumed total number of cases to estimate R0 values for best-case, median and worst-case 1.5–3.5 (2.5) /
T29 4595-4843 Sentence denotes Julien and Althaus9 China and overseas 18 January 2020 Stochastic simulations of early outbreak trajectories Stochastic simulations of early outbreak trajectories were performed that are consistent with the epidemiological findings to date 2.2
T30 4844-5062 Sentence denotes Tang et al.10 China 22 January 2020 Mathematical SEIR-type epidemiological model incorporates appropriate compartments corresponding to interventions Method-based method and Likelihood-based method 6.47 5.71–7.23
T31 5063-5222 Sentence denotes Qun Li et al.11 China 22 January 2020 Statistical exponential growth model Mean incubation period = 5.2 days, mean serial interval = 7.5 days 2.2 1.4–3.9
T32 5223-5237 Sentence denotes Averaged 3.28
T33 5238-5262 Sentence denotes CI, Confidence interval.