PMC:7058650 JSONTXT

Spans

Passengers' destinations from China: low risk of Novel Coronavirus (2019-nCoV) transmission into Africa and South America Novel Coronavirus (2019-nCoV [SARS-COV-2]) was detected in humans during the last week of December 2019 at Wuhan city in China, and caused 24 554 cases in 27 countries and territories as of 5 February 2020. The objective of this study was to estimate the risk of transmission of 2019-nCoV through human passenger air flight from four major cities of China (Wuhan, Beijing, Shanghai and Guangzhou) to the passengers' destination countries. We extracted the weekly simulated passengers' end destination data for the period of 1–31 January 2020 from FLIRT, an online air travel dataset that uses information from 800 airlines to show the direct flight and passengers' end destination. We estimated a risk index of 2019-nCoV transmission based on the number of travellers to destination countries, weighted by the number of confirmed cases of the departed city reported by the World Health Organization (WHO). We ranked each country based on the risk index in four quantiles (4th quantile being the highest risk and 1st quantile being the lowest risk). During the period, 388 287 passengers were destined for 1297 airports in 168 countries or territories across the world. The risk index of 2019-nCoV among the countries had a very high correlation with the WHO-reported confirmed cases (0.97). According to our risk score classification, of the countries that reported at least one Coronavirus-infected pneumonia (COVID-19) case as of 5 February 2020, 24 countries were in the 4th quantile of the risk index, two in the 3rd quantile, one in the 2nd quantile and none in the 1st quantile. Outside China, countries with a higher risk of 2019-nCoV transmission are Thailand, Cambodia, Malaysia, Canada and the USA, all of which reported at least one case. In pan-Europe, UK, France, Russia, Germany and Italy; in North America, USA and Canada; in Oceania, Australia had high risk, all of them reported at least one case. In Africa and South America, the risk of transmission is very low with Ethiopia, South Africa, Egypt, Mauritius and Brazil showing a similar risk of transmission compared to the risk of any of the countries where at least one case is detected. The risk of transmission on 31 January 2020 was very high in neighbouring Asian countries, followed by Europe (UK, France, Russia and Germany), Oceania (Australia) and North America (USA and Canada). Increased public health response including early case recognition, isolation of identified case, contract tracing and targeted airport screening, public awareness and vigilance of health workers will help mitigate the force of further spread to naïve countries. Introduction On 31 December 2019, local hospitals in Wuhan, China reported that they had detected a series of cases of Novel Coronavirus-infected pneumonia to the World Health Organization (WHO) [1]. On 7 January, the causative agent was identified by the Chinese Centre for Disease Control and Prevention as a Novel Coronavirus and designated ‘2019-nCoV’ and finally as "SARS-COV-2". Epidemiological investigations identified the local Huanan seafood wet market as the location of an initial exposure event [2]. The market was closed on 31 December 2019 [2, 3] and wildlife market activity was banned countrywide. Despite travel restrictions to and from the city imposed by Chinese authorities to limit the potential dispersion of the virus beyond the region [4, 5], international cases continue to be reported. As of 5 February 2020, there were 24 554 confirmed Novel Coronavirus-infected pneumonia (COVID-19) cases in 27 countries or territories, of which 24 363 (99.2%) were within mainland China [6]. The locations of internationally imported cases are consistent with risk models generated from flight data out of Wuhan city. Transmission from mildly symptomatic (i.e. cough, lethargy, myalgia) infected individuals was identified early in the course of this outbreak, with human-to-human transmission detected in international case series [7]. The timing of this outbreak around the lunar new year widely celebrated in China coincides with a period of highest annual human movement patterns in the region and between China and globally [8], increasing the potential for rapid geographic dispersal of the infection. Further, recent investment in the African continent by the Chinese state and private investors has led to an increasing Chinese diaspora [9] and a greater number of direct and indirect flight connections to the African continent from China [10]. There are few studies available on global risk of 2019-nCoV spread [4, 5, 11]. Bogoch et al. [5] and Chinazzi et al. [11] estimated the risk of importation of 2019-nCoV from major Chinese cities to the most frequent international destinations. Wu et al. estimated the risk of international spread compared to domestic outbound flights [4]. These articles do not model the cumulative risk of importation of 2019-nCoV in a country and instead focus on specific points of entry. Here, we considered all the end destinations of flights from four important cities of China involving 168 countries/territories around the world and calculated the total risk of transmission into a country by aggregating the risk associated with all the entry airports of the country. We further looked in more detail at the risk to Africa where the health infrastructure would be challenged tracking a new epidemic across its 54 countries. The aim of the current study was to explore the effect of sustained transmission from the four Chinese cities of Wuhan, Beijing, Shanghai and Guangzhou on international disease importation risk to 168 countries and territories, with a specific focus on Africa where current levels of healthcare infrastructure could provide a significant challenge for managing this novel epidemic. Methods Data We extracted modelled flight data for the final destination of passengers travelling from four Chinese cities (including domestic and international destinations) from the FLIRT database [12, 13]. FLIRT was designed to predict the flow and likely destination of infected travellers through the air travel network. It uses a database of flight schedules from over 800 airlines and displays direct flight connections in addition to a modelled end destination (three-letter IATA code for airports). Flight connection data and passenger numbers are based on the data collected since October 2014 [12]. We extracted the simulated passenger's data for each week for the period of 1 January to 31 January 2020 from four major Chinese cities: Wuhan, Beijing, Shanghai and Guangzhou. The simulation can process up to 20 000 passengers' information for a particular time frame from any city (including surrounding airports). We collected the reported 2019-nCoV case data from the WHO's daily situation update website [14]. Estimation of risk of transmission To estimate the relative risk of 2019-nCoV transmission, we considered all infected passengers who travelled between 1 January and 31 January to possess a maximum risk of transmission 1 (and no infected passengers means no risk) and estimated the relative risk of each country based on the number of passengers who travelled from each of the four cities. Thus countries with a higher number of passengers travelling from any of these cities had a higher risk of transmission. We then weighted the risk estimated for each city with the number of reported infected people in each city by 31 January 2020 [14] and estimated the mean average risk of transmission termed as ‘Risk index’ which follows the equation below:where x is the destination country, Risk index (x) is the risk of infection importation in country x, P(x)n is the number of passengers to country x from city n, Pn is the total number of passengers who left city n, In is the number of infected people in city n and Cn is the population size of city n. The risk index denotes the risk of at least one case being imported into a country or territory where 1 means an absolute certainty and 0 means no risk at all. Our model assumed that there is no case outside China and thus ignored if any country already had imported case(s). In countries where 2019-nCoV is already detected, the risk index would explain the risk of importing additional infected individuals from China. We performed a Pearson correlation coefficient test between the risk index of the country and the WHO's reported case number from the country. We grouped the countries in four quantiles based on the risk index where high-risk countries were grouped as the 4th (>75th percentiles) and the 3rd (>50th to ⩽75th percentiles) quantiles and low-risk countries were grouped as the 2nd (>25th to ⩽50th percentiles) and the 1st (⩽25th percentile) quantiles (Table 1). Table 1. The list of countries or territories based on their risk index in different quantiles for 2019-nCoV (SARS-COV-2) transmission 4th Quantile risk index (highest risk) 3rd Quantile risk index 2nd Quantile risk index 1st Quantile risk index (lowest risk) Sl/Rank Country Risk index Country Risk index Country Risk index Country Risk index 1 China 0.609603126 Sweden 0.000320248 Kenya 3.53  ×  10−05 Jamaica 3.84  ×  10−06 2 Thailand 0.099432816 Laos 0.000296262 Peru 3.18  ×  10−05 Serbia 3.22  ×  10−06 3 Cambodia 0.05294058 Brazil 0.00027186 Algeria 3.11  ×  10−05 Togo 2.73  ×  10−06 4 Malaysia 0.041899039 Denmark 0.000254904 French Polynesia 3.07  ×  10−05 Uganda 2.71  ×  10−06 5 Canada 0.02730388 Oman 0.000248884 Iceland 3.00  ×  10−05 Tonga 2.69  ×  10−06 6 USA 0.021169936 Israel 0.000221865 Samoa 2.74  ×  10−05 The Bahamas 2.39  ×  10−06 7 Japan 0.01479856 Ukraine 0.000209515 Tanzania 2.73  ×  10−05 Cote d'Ivoire 2.02  ×  10−06 8 India 0.010256629 Poland 0.0002 Palau 2.63  ×  10−05 Suriname 2.01  ×  10−06 9 UK 0.008786839 Brunei 0.000181028 Djibouti 2.45  ×  10−05 Vanuatu 1.99  ×  10−06 10 South Korea 0.008072566 Czech Republic 0.000179806 Belarus 2.40  ×  10−05 Albania 1.90  ×  10−06 11 Vietnam 0.007928803 Northern Mariana Islands 0.000177972 Bosnia and Herzegovina 2.40  ×  10−05 Malta 1.73  ×  10−06 12 Singapore 0.007784474 Belgium 0.000175566 Cook Islands 2.26  ×  10−05 Guinea 1.60  ×  10−06 13 Hong Kong 0.007636714 Maldives 0.000172453 Colombia 1.94  ×  10−05 Namibia 1.55  ×  10−06 14 Indonesia 0.007197131 Norway 0.000171441 Papua New Guinea 1.88  ×  10−05 Democratic Republic of Congo 1.41  ×  10−06 15 United Arab Emirates 0.007089607 Kuwait 0.000166929 Nigeria 1.85  ×  10−05 Rwanda 1.22  ×  10−06 16 France 0.006814962 Egypt 0.000139373 Jordan 1.83  ×  10−05 Honduras 1.02  ×  10−06 17 Turkey 0.00568808 Iran 0.000137181 Cuba 1.79  ×  10−05 Gabon 8.98  ×  10−07 18 Australia 0.005671745 Mongolia 0.000132319 Argentina 1.70  × 10−05 Republic of Congo 7.22  ×  10−07 19 Russia 0.005592859 Chile 0.000129975 Tunisia 1.65  ×  10−05 Bermuda 5.99  ×  10−07 20 Pakistan 0.004811284 North Korea 0.000128562 Ghana 1.61  ×  10−05 Antigua and Barbuda 3.52  ×  10−07 21 Qatar 0.004113225 Mauritius 0.000126679 Armenia 1.53  ×  10−05 Barbados 3.52  ×  10−07 22 Macau 0.003373727 Portugal 0.000113251 Dominican Republic 1.46  ×  10−05 Cape Verde 3.52  ×  10−07 23 Germany 0.003176858 Uzbekistan 9.67  ×  10−05 New Caledonia 1.34  ×  10−05 Guyana 3.52  ×  10−07 24 Italy 0.002753413 Hungary 8.97  ×  10−05 Cyprus 1.29  ×  10−05 Madagascar 2.99  ×  10−07 25 Philippines 0.002740638 Azerbaijan 8.64  ×  10−05 Bhutan 1.25  ×  10−05 Grenada 2.47  ×  10−07 26 Taiwan 0.002590034 Croatia 8.57  ×  10−05 Nepal 1.25  ×  10−05 Bolivia 1.76  ×  10−07 27 Belize 0.002009996 Tajikistan 8.50  ×  10−05 Slovenia 1.24  ×  10−05 Burkina Faso 1.76  ×  10−07 28 Ethiopia 0.001469205 Bahrain 6.31  ×  10−05 Moldova 1.22  ×  10−05 Cameroon 1.76  ×  10−07 29 Finland 0.001307074 Fiji 6.29  ×  10−05 Kosovo 1.21  ×  10−05 Chad 1.76  ×  10−07 30 Sri Lanka 0.001179859 Kyrgyzstan 6.22  ×  10−05 Zambia 1.20  ×  10−05 Mozambique 1.76  ×  10−07 31 The Netherlands 0.000980799 Afghanistan 6.16  ×  10−05 El Salvador 1.05  ×  10−05 Paraguay 1.76  ×  10−07 32 New Zealand 0.000971254 Panama 5.91  ×  10−05 Romania 7.56  ×  10−06 Solomon Islands 1.76  ×  10−07 33 Greece 0.000958209 Morocco 5.60  ×  10−05 Guatemala 6.92  ×  10−06 Syria 1.76  ×  10−07 34 Bangladesh 0.000831196 Iraq 5.54  ×  10−05 Angola 6.77  ×  10−06 Uruguay 1.76  ×  10−07 35 Myanmar 0.000803755 Bulgaria 5.07  ×  10−05 Costa Rica 6.41  ×  10−06 Venezuela 1.76  ×  10−07 36 Saudi Arabia 0.000750981 Lithuania 4.99  ×  10−05 Trinidad and Tobago 6.13  ×  10−06 Zimbabwe 1.76  ×  10−07 37 Spain 0.000564876 Seychelles 4.82  ×  10−05 Sudan 5.66  ×  10−06 Libya 1.23  ×  10−07 38 Switzerland 0.00056232 Lebanon 4.47  ×  10−05 Ecuador 5.56  ×  10−06 Macedonia 1.23  ×  10−07 39 Austria 0.000498664 Georgia 4.37  ×  10−05 Puerto Rico 4.68  ×  10−06 Saint Lucia 1.23  ×  10−07 40 South Africa 0.000468876 Latvia 4.06  ×  10−05 Turkmenistan 4.42  ×  10−06 Sierra Leone 1.23  ×  10−07 41 Kazakhstan 0.000443175 Luxembourg 3.80  ×  10−05 Mauritania 4.09  ×  10−06 Somalia 1.23  ×  10−07 42 Ireland 0.000371199 Estonia 3.69  ×  10−05 Timor-Leste 1.23  ×  10−07 43 Mexico 0.000322198 44 Number of countries/territories: 168 Africa: 2 Africa: 3 Africa: 11 Africa: 19 Asian: 22 Asian: 16 Asian: 4 Asian: 2 Pan-Europe:13 Pan-Europe: 18 Pan-Europe: 9 Pan-Europe: 4 North America: 4 North America: 0 North America: 3 North America: 7 Oceania: 2 Oceania: 2 Oceania: 6 Oceania: 3 South America: 0 South America: 3 South America: 8 South America: 7 Total: 43 Total: 42 Total: 41 Total: 42 Results We modelled 388 287 passengers travelling to 1297 airports in 168 countries or territories. The risk index of 2019-nCoV for these countries is presented in Figure 1. A regularly updated risk map is hosted on PANDORA's website ( https://ncovdata.io/import/). Fig. 1. The map with the risk index of countries or territories with 2019-nCoV (SARS-COV-2) infection (0-1). The darker colour indicates higher risk and light blue colour indicates the absence of data. In general, China and neighbouring countries have a higher risk of transmission of 2019-nCoV infection. Africa and South America generally have a low risk of transmission. Ethiopia, South Africa, Egypt, Mauritius and Brazil have a similar risk of transmission to countries where at least one case has been detected. For example, the risk index of 0.1 for Thailand indicates that based on travel patterns observed during 1–31 January 2020 from four major cities of China, Thailand has 10% risk of importing a 2019-nCoV-infected person from China. Outside China, the countries with the highest risk of 2019-nCoV transmission from our model were Thailand, Cambodia, Malaysia, Canada and the USA, all of which have reported at least one case. Among the top 25 countries identified with the highest risk of 2019-nCoV transmission (Fig. 2), all countries except four (Indonesia, Turkey, Pakistan and Qatar) have detected at least one case as of 5 February 2020 (Table 1). Fig. 2. Chart showing the relative risk of countries outside China being exposed to coronavirus ( SARS-COV-2) transmission. The second Y-axis indicates the number of confirmed COVID-19 cases reported by the WHO as of 5 February 2020. Twenty-one of the top 25 at-risk countries (except Indonesia, Turkey, Pakistan and Qatar) reported at least one COVID-19 case by 5 February 2020. According to our risk score classification, of the countries that reported at least one 2019-nCoV case as of 5 February 2020, 24 countries were in the 4th quantile of the risk index, two (Sweden and Belgium) in the 3rd quantile, one (Nepal) in the 2nd quantile and none in the 1st quantile [14]. Asian and European countries are dominant in the 3rd and 4th quantile (high-risk index) while African and South American Countries are the majority in the 1st and 2nd quantiles (low-risk index) (Table 1). Out of 43 countries in the 4th quantile, 22 were from Asia and 13 from Pan-Europe, whereas in the 1st quantile, 19 out of 42 countries were from Africa (Table 1). The overall risk of transmission of the virus into Africa is low. However, Ethiopia, South Africa, Egypt and Mauritius have a similar risk score as countries where at least one case was detected. In South America, only Brazil has a similar or greater risk than countries currently reporting cases. In North America, both the USA and Canada have high risk and had imported cases reported early in the outbreak. Australia and New Zealand have risk similar to the countries where at least one case is detected. Although there are few direct flights from China to African destinations, a large number of indirect flights operate via Dubai, an international airport hub in the United Arab Emirates. The correlation coefficient between the estimated risk index of the countries and the WHO-reported confirmed cases was 0.97. Discussion Our analysis showed a high risk of transmission of 2019-nCoV through air flights from four Chinese cities to neighbouring Asian countries. The risk of 2019-nCoV (SARS-COV-2) transmission was relatively low in Africa and South America. Several countries in both North America and Oceania showed high risk with these countries reporting at least one case of 2019-nCoV. Our risk index showed a very high correlation with the WHO's reported COVID-19 cases. China has four times as many air passengers now than it had during SARS outbreaks in 2003. A large number of workers now travel internationally where China is heavily investing in infrastructure development in Africa, parts of Asia and Latin America. A significant and mobile Chinese population live in Europe and North America alongside an increasing amount of Chinese tourism. This travel poses a high risk of 2019-nCoV travelling across international borders. Although acquiring a case is low for these countries, the consequences are likely to be higher because of the country's capacity to control such situations [15]. Based on our model, the countries with the highest risk index but have not reported any case of 2019-nCoV as yet are Indonesia, Pakistan, Turkey, Qatar and Ethiopia. These countries are at risk and they should be the priorities for investment in case detection and airport screening. Compared to the SARS outbreak of 2003, the situation in 2020 differs due to the increased frequency and volume of international air travel. During these early stages of the epidemic, case numbers have doubled on average every 7.4 days with an estimated basic reproduction number (R0) of 2.2 (1.4–3.9) [1]. Although the data so far suggest that the disease is mild in most cases and that the case fatality rate is currently reported to be lower than SARS or MERS, the situation is likely to go on for months and could cause severe disruption in countries that are not well prepared. Hence countries ranked as high risk in our model (4th and 3rd quantiles) should take all steps necessary to ensure prompt detection of cases and the capacity to manage these cases to prevent ongoing spread. International investment needs to be directed especially to countries with limited healthcare and public health surveillance capacity to enable the detection of cases and disease control [16, 17] Our estimation showed a lower risk of transmission in Africa and South America. Nevertheless, low and middle countries on these continents are more likely to see the ongoing spread and major disruption from the introduction of a single case, even if the risk of importation is lower. Direct flights between Chinese cities and African countries are few which has contributed to a lower estimated risk of 2019-nCoV transmission. As of 5 February 2020, five cases have been reported from the United Arab Emirates (UAE) which acts as an important travel hub for onward journeys to the African continent. Implementation of mildly symptomatic passenger screening in the UAE may reduce the potential for 2019-nCoV to enter Africa. Screening and diagnostic capacity in Africa has been supported by a rapid grant from the Bill and Melinda Gates Foundation to the African CDC, mitigating the consequences of an importation. The current situation is extremely dynamic and since then some countries have instigated flight restrictions and closed borders (e.g. Russia). These decisions were relevant for these locations but not based on probabilities. WHO has not recommended a cessation of transportation to free countries but suggested preventive measures. This would seem appropriate for Africa and South America with the caveat that only one case is needed to initiate a local epidemic without proper biosecurity and quarantine measures, whilst other regions will need to decide on a case-by-case basis through appropriate risk assessment. Our study has several limitations. We considered flights from four cities of China, three of which (Beijing, Shanghai and Guangzhou) are ranked among top five busiest airports (based on the number of flights) in China and Wuhan as the site of origin of outbreaks. While including further cities in our analysis would have added further information, Beijing and Shanghai cover most of the international destinations to which other airports are connected. Further, we have adjusted for the number of reported cases in each departure. When developing the model, we initially explored using only Wuhan as the departure airport, the rank of top 10 at-risk countries remained the same. Thus our findings are still representative of the total risk posed by other airports or cities. We did not consider the risk associated with the travel route through water and land which might have an impact in the spread of 2019-nCoV. Another limitation is that the model does not account for travel patterns in other affected countries. For example, some cases have started acquiring the disease outside of China: the third case notified in the UK acquired the disease in Singapore. However overall, the risk compared with the risk of acquisition in China is very low, therefore it probably would not change the order of countries. Conclusion The risk of transmission of SARS-COV-2 from China on 31 January 2020 was highest to neighbouring countries in Asia (Thailand, Cambodia, Malaysia), followed by Europe (UK, France, Russia and Germany), Oceania (Australia and New Zealand) and North America (USA and Canada). The situation is dynamic and may have changed with the closure of flights and borders since this analysis was done. The higher correlation coefficient with travellers and case detection data indicate that 2019-nCoV will remain a significant threat from the air-borne movement of people. The authors suggest an ongoing risk-based approach to the prioritisation of and investment by international and national agencies and authorities, in emergency interventions for the prevention of movement of 2019-nCoV (SARS-COV-2) through human travel. This is achieved by appropriate actions at high-risk points of departure and at highly used ports of entry from these infected zones. Closure of certain routes, targeted airport screening, risk communication, public awareness and targeted training and vigilance of health workers associated with the portals of entry of visitors to their countries will help mitigate the force of further spread of 2019-nCoV. Acknowledgements All authors are part of PANDORA-ID-NET Consortium (EDCTP Reg/Grant RIA2016E-1609) funded by the European and Developing Countries Clinical Trials Partnership (EDCTP2) programme which is supported under Horizon 2020, the European Union's Framework Programme for Research and Innovation. AZ is in receipt of a National Institutes of Health Research (NIHR) senior investigator award and the PANDORA-ID-NET. FN and AZ acknowledge support from EDCTP (CANTAM2). We acknowledge the Eco Health Alliance for making FLIRT data publicly available. Conflict of interest The authors declare that they have no conflict of interest.
Span
440-446
765-771
3846-3852
4552-4558
5949-5955
6262-6268
6322-6328
6422-6428
18536-18548
20265-20271
55-66
68-77
129-140
142-151
153-157
153-163
402-411
420-425
834-843
1310-1319
1436-1441
1502-1513
1523-1532
1534-1542
1682-1686
1755-1764
1876-1879
2870-2881
2891-2900
3020-3027
3062-3073
3117-3121
3117-3127
3615-3626
3636-3645
3647-3655
3920-3925
3927-3935
3937-3944
4025-4030
4031-4039
4034-4039
4135-4140
4219-4224
4356-4365
4663-4672
4772-4781
5019-5028
5699-5706
6867-6876
7008-7017
7756-7765
8288-8297
8972-8981
8983-8987
8983-8993
9136-9140
9791-9795
9854-9861
10433-10451
10698-10704
11233-11237
11897-11901
11920-11923
13342-13345
13357-13360
13371-13374
13724-13733
13805-13808
13822-13829
13884-13887
13941-13950
13952-13956
13952-13962
13952-13973
14157-14166
14157-14176
14582-14591
14674-14683
14876-14885
14947-14953
15124-15142
15138-15142
15138-15148
15177-15181
15216-15224
15336-15342
15386-15394
15442-15447
15508-15517
15685-15689
15921-15924
15992-15995
16223-16228
16745-16748
16966-16975
17066-17075
17077-17081
17077-17087
17271-17280
17352-17360
17435-17439
17637-17643
17780-17789
18089-18098
18131-18137
18293-18297
18625-18632
18726-18730
18734-18738
19237-19244
19245-19256
19665-19674
19812-19815
19959-19968
20124-20127
21674-21680
21698-21707
21863-21870
21936-21943
22147-22151
22147-22157
22596-22605
22886-22895
22897-22901
22897-22907
22917-22922
23329-23338
23382-23389
23393-23396
23415-23418
23746-23753
23757-23760
23833-23836
23955-23963
13964-13973
14167-14176
182-188
278-280
334-343
818-819
1009-1021
1344-1345
1738-1739
2169-2170
2843-2844
2921-2933
3054-3055
3327-3335
3481-3486
3506-3510
3666-3668
4192-4193
4462-4465
4512-4513
4681-4685
4687-4689
4731-4733
5032-5033
5054-5059
5285-5286
5490-5491
5534-5537
5763-5764
5774-5779
5854-5855
6248-6249
6356-6357
6769-6770
7128-7129
7350-7351
7420-7421
8066-8067
8427-8428
8461-8465
10082-10084
10774-10776
11157-11159
11638-11640
12319-12321
12410-12412
12508-12510
13012-13014
13276-13278
13297-13299
13328-13331
13354-13356
13592-13594
13780-13781
14124-14125
14218-14219
14303-14304
14371-14374
14554-14557
14580-14581
15962-15964
16124-16129
16208-16209
16310-16313
16314-16315
16666-16667
16935-16936
17304-17305
17374-17377
17459-17460
17619-17620
17765-17766
17850-17851
19284-19285
19489-19490
19620-19623
19639-19640
20030-20033
20052-20053
20201-20210
20405-20408
20425-20426
20622-20623
20735-20736
20803-20806
22618-22619
23664-23665
1514-1522
2882-2890
3627-3635
3946-3954
4543-4551
6188-6196
7050-7058
7169-7177
7529-7537
7926-7934
8381-8389
13812-13818
14592-14600
16684-16692
21028-21032
23049-23057
23125-23138
7956-7958
21639-21644
23390-23392
23754-23756
23762-23764
2941-2942
18579-18580
19254-19256
49-66
123-140
1502-1532
3056-3073
3090-3099
2864-2900
3609-3645
7538-7544
7935-7941
10059-10066
11088-11117
12819-12836
13126-13143
14582-14600
15124-15135
22670-22676
0-121
123-329
330-561
562-804
805-1028
1029-1171
1172-1291
1292-1413
1414-1707
1708-1872
1873-2037
2038-2281
2282-2481
2482-2743
2745-2757
2758-2944
2945-3129
3130-3257
3258-3359
3360-3557
3558-3750
3751-3876
3877-4095
4096-4366
4367-4612
4613-4691
4692-4856
4857-4952
4953-5088
5089-5373
5374-5529
5530-5911
5913-5920
5922-5926
5927-6122
6123-6239
6240-6421
6422-6523
6524-6660
6661-6700
6701-6840
6841-6938
6940-6974
6975-7329
7330-7450
7451-7992
7993-8152
8153-8268
8269-8413
8414-8556
8557-8872
8873-8881
8882-9007
9008-9132
9133-9216
9217-9299
9300-9381
9382-9464
9465-9561
9562-9642
9643-9727
9728-9819
9820-9898
9899-9981
9982-10081
10082-10200
10201-10295
10296-10388
10389-10508
10509-10608
10609-10694
10695-10773
10774-10876
10877-10962
10963-11066
11067-11156
11157-11258
11259-11358
11359-11450
11451-11548
11549-11637
11638-11737
11738-11831
11832-11916
11917-12015
12016-12124
12125-12227
12228-12318
12319-12409
12410-12507
12508-12619
12620-12708
12709-12805
12806-12905
12906-13011
13012-13112
13113-13185
13186-13207
13208-13210
13211-13243
13244-13255
13256-13265
13266-13275
13276-13286
13287-13289
13290-13296
13297-13306
13307-13316
13317-13325
13326-13327
13328-13353
13354-13368
13369-13382
13383-13384
13385-13399
13400-13416
13417-13433
13434-13450
13451-13452
13453-13461
13462-13472
13473-13483
13484-13494
13495-13496
13497-13511
13512-13528
13529-13545
13546-13562
13563-13564
13565-13571
13572-13581
13582-13591
13592-13601
13602-13604
13606-13613
13614-13705
13706-13779
13780-13871
13872-13879
13880-13980
13981-14073
14074-14177
14178-14245
14246-14389
14390-14619
14620-14812
14813-15039
15040-15047
15048-15163
15164-15273
15274-15419
15420-15715
15716-15920
15921-16083
16084-16149
16150-16279
16280-16381
16382-16493
16494-16591
16592-16777
16778-16902
16904-16914
16915-17053
17054-17149
17150-17281
17282-17367
17368-17458
17459-17618
17619-17746
17747-17830
17831-17992
17993-18158
18159-18276
18277-18416
18417-18582
18583-18858
18859-19065
19066-19261
19262-19341
19342-19545
19546-19688
19689-19861
19862-19985
19986-20175
20176-20318
20319-20400
20401-20507
20508-20792
20793-20827
20828-21056
21057-21246
21247-21324
21325-21472
21473-21568
21569-21708
21709-21811
21812-21957
21958-22106
22108-22118
22119-22390
22391-22506
22507-22677
22678-22930
22931-23064
23065-23339
23341-23357
23358-23643
23644-23761
23762-23813
23814-23894
23896-23916
23917-23976