
PMC:7047374 / 17062-18388
Annnotations
LitCovid-PubTator
{"project":"LitCovid-PubTator","denotations":[{"id":"244","span":{"begin":101,"end":106},"obj":"Species"},{"id":"245","span":{"begin":93,"end":96},"obj":"Disease"},{"id":"246","span":{"begin":107,"end":116},"obj":"Disease"},{"id":"247","span":{"begin":128,"end":131},"obj":"Disease"}],"attributes":[{"id":"A244","pred":"tao:has_database_id","subj":"244","obj":"Tax:9606"},{"id":"A245","pred":"tao:has_database_id","subj":"245","obj":"MESH:C000656865"},{"id":"A246","pred":"tao:has_database_id","subj":"246","obj":"MESH:D007239"},{"id":"A247","pred":"tao:has_database_id","subj":"247","obj":"MESH:C000656865"}],"namespaces":[{"prefix":"Tax","uri":"https://www.ncbi.nlm.nih.gov/taxonomy/"},{"prefix":"MESH","uri":"https://id.nlm.nih.gov/mesh/"},{"prefix":"Gene","uri":"https://www.ncbi.nlm.nih.gov/gene/"},{"prefix":"CVCL","uri":"https://web.expasy.org/cellosaurus/CVCL_"}],"text":"In this study, we assumed that the incubation period (1/ωP) was the same as latent period (1/ω’P) of human infection, thus ωP = ω’P. Based on the equations of RP model, we can get the disease free equilibrium point as: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ \\left(\\frac{\\varLambda_P}{m_P},0,0,0,0,0\\right) $$\\end{document}ΛPmP00000\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ F=\\left[\\begin{array}{cccc}0\u0026 {\\beta}_P\\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_P\\kappa \\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_W\\frac{\\varLambda_P}{m_P}\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\end{array}\\right],{V}^{-1}=\\left[\\begin{array}{cccc}\\frac{1}{\\omega_P+{m}_P}\u0026 0\u0026 0\u0026 0\\\\ {}A\u0026 \\frac{1}{\\gamma_P+{m}_P}\u0026 0\u0026 0\\\\ {}B\u0026 0\u0026 \\frac{1}{\\gamma_P^{\\hbox{'}}+{m}_P}\u0026 0\\\\ {}B\u0026 E\u0026 G\u0026 \\frac{1}{\\varepsilon}\\end{array}\\right] $$\\end{document}F=0βPΛPmPβPκΛPmPβWΛPmP000000000000,V−1=1ωP+mP000A1γP+mP00B01γP'+mP0BEG1ε"}
LitCovid-PD-FMA-UBERON
{"project":"LitCovid-PD-FMA-UBERON","denotations":[{"id":"T8","span":{"begin":1023,"end":1037},"obj":"Body_part"},{"id":"T9","span":{"begin":1289,"end":1292},"obj":"Body_part"}],"attributes":[{"id":"A8","pred":"fma_id","subj":"T8","obj":"http://purl.org/sig/ont/fma/fma8661"},{"id":"A9","pred":"fma_id","subj":"T9","obj":"http://purl.org/sig/ont/fma/fma13444"},{"id":"A10","pred":"fma_id","subj":"T9","obj":"http://purl.org/sig/ont/fma/fma68614"}],"text":"In this study, we assumed that the incubation period (1/ωP) was the same as latent period (1/ω’P) of human infection, thus ωP = ω’P. Based on the equations of RP model, we can get the disease free equilibrium point as: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ \\left(\\frac{\\varLambda_P}{m_P},0,0,0,0,0\\right) $$\\end{document}ΛPmP00000\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ F=\\left[\\begin{array}{cccc}0\u0026 {\\beta}_P\\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_P\\kappa \\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_W\\frac{\\varLambda_P}{m_P}\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\end{array}\\right],{V}^{-1}=\\left[\\begin{array}{cccc}\\frac{1}{\\omega_P+{m}_P}\u0026 0\u0026 0\u0026 0\\\\ {}A\u0026 \\frac{1}{\\gamma_P+{m}_P}\u0026 0\u0026 0\\\\ {}B\u0026 0\u0026 \\frac{1}{\\gamma_P^{\\hbox{'}}+{m}_P}\u0026 0\\\\ {}B\u0026 E\u0026 G\u0026 \\frac{1}{\\varepsilon}\\end{array}\\right] $$\\end{document}F=0βPΛPmPβPκΛPmPβWΛPmP000000000000,V−1=1ωP+mP000A1γP+mP00B01γP'+mP0BEG1ε"}
LitCovid-PD-MONDO
{"project":"LitCovid-PD-MONDO","denotations":[{"id":"T82","span":{"begin":107,"end":116},"obj":"Disease"}],"attributes":[{"id":"A82","pred":"mondo_id","subj":"T82","obj":"http://purl.obolibrary.org/obo/MONDO_0005550"}],"text":"In this study, we assumed that the incubation period (1/ωP) was the same as latent period (1/ω’P) of human infection, thus ωP = ω’P. Based on the equations of RP model, we can get the disease free equilibrium point as: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ \\left(\\frac{\\varLambda_P}{m_P},0,0,0,0,0\\right) $$\\end{document}ΛPmP00000\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ F=\\left[\\begin{array}{cccc}0\u0026 {\\beta}_P\\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_P\\kappa \\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_W\\frac{\\varLambda_P}{m_P}\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\end{array}\\right],{V}^{-1}=\\left[\\begin{array}{cccc}\\frac{1}{\\omega_P+{m}_P}\u0026 0\u0026 0\u0026 0\\\\ {}A\u0026 \\frac{1}{\\gamma_P+{m}_P}\u0026 0\u0026 0\\\\ {}B\u0026 0\u0026 \\frac{1}{\\gamma_P^{\\hbox{'}}+{m}_P}\u0026 0\\\\ {}B\u0026 E\u0026 G\u0026 \\frac{1}{\\varepsilon}\\end{array}\\right] $$\\end{document}F=0βPΛPmPβPκΛPmPβWΛPmP000000000000,V−1=1ωP+mP000A1γP+mP00B01γP'+mP0BEG1ε"}
LitCovid-PD-CLO
{"project":"LitCovid-PD-CLO","denotations":[{"id":"T150","span":{"begin":101,"end":106},"obj":"http://purl.obolibrary.org/obo/NCBITaxon_9606"},{"id":"T151","span":{"begin":1102,"end":1103},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T152","span":{"begin":1140,"end":1141},"obj":"http://purl.obolibrary.org/obo/CLO_0001021"},{"id":"T153","span":{"begin":1189,"end":1190},"obj":"http://purl.obolibrary.org/obo/CLO_0001021"},{"id":"T154","span":{"begin":1291,"end":1294},"obj":"http://purl.obolibrary.org/obo/CLO_0053733"}],"text":"In this study, we assumed that the incubation period (1/ωP) was the same as latent period (1/ω’P) of human infection, thus ωP = ω’P. Based on the equations of RP model, we can get the disease free equilibrium point as: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ \\left(\\frac{\\varLambda_P}{m_P},0,0,0,0,0\\right) $$\\end{document}ΛPmP00000\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ F=\\left[\\begin{array}{cccc}0\u0026 {\\beta}_P\\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_P\\kappa \\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_W\\frac{\\varLambda_P}{m_P}\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\end{array}\\right],{V}^{-1}=\\left[\\begin{array}{cccc}\\frac{1}{\\omega_P+{m}_P}\u0026 0\u0026 0\u0026 0\\\\ {}A\u0026 \\frac{1}{\\gamma_P+{m}_P}\u0026 0\u0026 0\\\\ {}B\u0026 0\u0026 \\frac{1}{\\gamma_P^{\\hbox{'}}+{m}_P}\u0026 0\\\\ {}B\u0026 E\u0026 G\u0026 \\frac{1}{\\varepsilon}\\end{array}\\right] $$\\end{document}F=0βPΛPmPβPκΛPmPβWΛPmP000000000000,V−1=1ωP+mP000A1γP+mP00B01γP'+mP0BEG1ε"}
LitCovid-PD-CHEBI
{"project":"LitCovid-PD-CHEBI","denotations":[{"id":"T116","span":{"begin":159,"end":161},"obj":"Chemical"},{"id":"T117","span":{"begin":858,"end":862},"obj":"Chemical"},{"id":"T118","span":{"begin":893,"end":897},"obj":"Chemical"},{"id":"T119","span":{"begin":935,"end":939},"obj":"Chemical"}],"attributes":[{"id":"A116","pred":"chebi_id","subj":"T116","obj":"http://purl.obolibrary.org/obo/CHEBI_141419"},{"id":"A117","pred":"chebi_id","subj":"T117","obj":"http://purl.obolibrary.org/obo/CHEBI_10545"},{"id":"A118","pred":"chebi_id","subj":"T118","obj":"http://purl.obolibrary.org/obo/CHEBI_10545"},{"id":"A119","pred":"chebi_id","subj":"T119","obj":"http://purl.obolibrary.org/obo/CHEBI_10545"}],"text":"In this study, we assumed that the incubation period (1/ωP) was the same as latent period (1/ω’P) of human infection, thus ωP = ω’P. Based on the equations of RP model, we can get the disease free equilibrium point as: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ \\left(\\frac{\\varLambda_P}{m_P},0,0,0,0,0\\right) $$\\end{document}ΛPmP00000\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ F=\\left[\\begin{array}{cccc}0\u0026 {\\beta}_P\\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_P\\kappa \\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_W\\frac{\\varLambda_P}{m_P}\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\end{array}\\right],{V}^{-1}=\\left[\\begin{array}{cccc}\\frac{1}{\\omega_P+{m}_P}\u0026 0\u0026 0\u0026 0\\\\ {}A\u0026 \\frac{1}{\\gamma_P+{m}_P}\u0026 0\u0026 0\\\\ {}B\u0026 0\u0026 \\frac{1}{\\gamma_P^{\\hbox{'}}+{m}_P}\u0026 0\\\\ {}B\u0026 E\u0026 G\u0026 \\frac{1}{\\varepsilon}\\end{array}\\right] $$\\end{document}F=0βPΛPmPβPκΛPmPβWΛPmP000000000000,V−1=1ωP+mP000A1γP+mP00B01γP'+mP0BEG1ε"}
LitCovid-sentences
{"project":"LitCovid-sentences","denotations":[{"id":"T147","span":{"begin":0,"end":132},"obj":"Sentence"},{"id":"T148","span":{"begin":133,"end":1326},"obj":"Sentence"}],"namespaces":[{"prefix":"_base","uri":"http://pubannotation.org/ontology/tao.owl#"}],"text":"In this study, we assumed that the incubation period (1/ωP) was the same as latent period (1/ω’P) of human infection, thus ωP = ω’P. Based on the equations of RP model, we can get the disease free equilibrium point as: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ \\left(\\frac{\\varLambda_P}{m_P},0,0,0,0,0\\right) $$\\end{document}ΛPmP00000\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ F=\\left[\\begin{array}{cccc}0\u0026 {\\beta}_P\\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_P\\kappa \\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_W\\frac{\\varLambda_P}{m_P}\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\end{array}\\right],{V}^{-1}=\\left[\\begin{array}{cccc}\\frac{1}{\\omega_P+{m}_P}\u0026 0\u0026 0\u0026 0\\\\ {}A\u0026 \\frac{1}{\\gamma_P+{m}_P}\u0026 0\u0026 0\\\\ {}B\u0026 0\u0026 \\frac{1}{\\gamma_P^{\\hbox{'}}+{m}_P}\u0026 0\\\\ {}B\u0026 E\u0026 G\u0026 \\frac{1}{\\varepsilon}\\end{array}\\right] $$\\end{document}F=0βPΛPmPβPκΛPmPβWΛPmP000000000000,V−1=1ωP+mP000A1γP+mP00B01γP'+mP0BEG1ε"}