> top > docs > PMC:7047374 > spans > 17054-23868 > annotations

PMC:7047374 / 17054-23868 JSONTXT

Annnotations TAB JSON ListView MergeView

LitCovid-PubTator

Id Subject Object Predicate Lexical cue tao:has_database_id
244 109-114 Species denotes human Tax:9606
245 101-104 Disease denotes ω’P MESH:C000656865
246 115-124 Disease denotes infection MESH:D007239
247 136-139 Disease denotes ω’P MESH:C000656865
251 6423-6433 Species denotes SARS-CoV-2 Tax:2697049
252 6640-6660 Disease denotes secondary infections MESH:D060085
253 6699-6707 Disease denotes infected MESH:D007239

LitCovid-PD-FMA-UBERON

Id Subject Object Predicate Lexical cue fma_id
T8 1031-1045 Body_part denotes right],{V}^{-1 http://purl.org/sig/ont/fma/fma8661
T9 1297-1300 Body_part denotes V−1 http://purl.org/sig/ont/fma/fma13444|http://purl.org/sig/ont/fma/fma68614
T11 3828-3834 Body_part denotes V}^{-1 http://purl.org/sig/ont/fma/fma13444|http://purl.org/sig/ont/fma/fma68614
T13 4401-4407 Body_part denotes V}^{-1 http://purl.org/sig/ont/fma/fma13444|http://purl.org/sig/ont/fma/fma68614

LitCovid-PD-MONDO

Id Subject Object Predicate Lexical cue mondo_id
T82 115-124 Disease denotes infection http://purl.obolibrary.org/obo/MONDO_0005550
T83 6423-6431 Disease denotes SARS-CoV http://purl.obolibrary.org/obo/MONDO_0005091
T84 6423-6427 Disease denotes SARS http://purl.obolibrary.org/obo/MONDO_0005091
T85 6446-6448 Disease denotes R2 http://purl.obolibrary.org/obo/MONDO_0019903
T86 6650-6660 Disease denotes infections http://purl.obolibrary.org/obo/MONDO_0005550

LitCovid-PD-CLO

Id Subject Object Predicate Lexical cue
T150 109-114 http://purl.obolibrary.org/obo/NCBITaxon_9606 denotes human
T151 1110-1111 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T152 1148-1149 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T153 1197-1198 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T154 1299-1302 http://purl.obolibrary.org/obo/CLO_0053733 denotes 1=1
T155 1617-1618 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T156 1742-1743 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T157 2027-2028 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T158 2145-2146 http://purl.obolibrary.org/obo/CLO_0001021 denotes B
T159 3894-3895 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T160 4389-4392 http://purl.obolibrary.org/obo/CLO_0051142 denotes rho
T161 5447-5448 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T162 5632-5633 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T163 5817-5818 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T164 5997-5998 http://purl.obolibrary.org/obo/CLO_0001021 denotes b
T165 6214-6216 http://purl.obolibrary.org/obo/CLO_0008285 denotes P1
T166 6246-6249 http://purl.obolibrary.org/obo/CLO_0008285 denotes P'1
T167 6246-6249 http://purl.obolibrary.org/obo/CLO_0008286 denotes P'1
T168 6281-6283 http://purl.obolibrary.org/obo/CLO_0008285 denotes p1
T169 6281-6283 http://purl.obolibrary.org/obo/CLO_0008286 denotes p1
T170 6313-6316 http://purl.obolibrary.org/obo/CLO_0008285 denotes P'1
T171 6313-6316 http://purl.obolibrary.org/obo/CLO_0008286 denotes P'1
T172 6690-6691 http://purl.obolibrary.org/obo/CLO_0001020 denotes a

LitCovid-PD-CHEBI

Id Subject Object Predicate Lexical cue chebi_id
T116 167-169 Chemical denotes RP http://purl.obolibrary.org/obo/CHEBI_141419
T117 866-870 Chemical denotes beta http://purl.obolibrary.org/obo/CHEBI_10545
T118 901-905 Chemical denotes beta http://purl.obolibrary.org/obo/CHEBI_10545
T119 943-947 Chemical denotes beta http://purl.obolibrary.org/obo/CHEBI_10545
T120 1703-1708 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T121 2096-2101 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T122 2519-2524 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T123 2636-2641 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T124 3025-3030 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T125 3383-3388 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T126 3549-3551 Chemical denotes RP http://purl.obolibrary.org/obo/CHEBI_141419
T127 3863-3867 Chemical denotes beta http://purl.obolibrary.org/obo/CHEBI_10545
T128 3898-3902 Chemical denotes beta http://purl.obolibrary.org/obo/CHEBI_10545
T129 3939-3943 Chemical denotes beta http://purl.obolibrary.org/obo/CHEBI_10545
T130 4072-4074 Chemical denotes FV http://purl.obolibrary.org/obo/CHEBI_73638
T131 4418-4422 Chemical denotes beta http://purl.obolibrary.org/obo/CHEBI_10545
T132 4529-4534 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T133 4554-4558 Chemical denotes beta http://purl.obolibrary.org/obo/CHEBI_10545
T134 4655-4660 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T135 4691-4695 Chemical denotes beta http://purl.obolibrary.org/obo/CHEBI_10545
T136 4806-4811 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T137 4842-4846 Chemical denotes beta http://purl.obolibrary.org/obo/CHEBI_10545
T138 4951-4956 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T139 5017-5019 Chemical denotes FV http://purl.obolibrary.org/obo/CHEBI_73638
T140 5143-5145 Chemical denotes RP http://purl.obolibrary.org/obo/CHEBI_141419
T141 5601-5606 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T142 5782-5787 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T143 5973-5978 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T144 6150-6155 Chemical denotes gamma http://purl.obolibrary.org/obo/CHEBI_30212
T145 6214-6216 Chemical denotes P1 http://purl.obolibrary.org/obo/CHEBI_60949
T146 6386-6388 Chemical denotes RP http://purl.obolibrary.org/obo/CHEBI_141419
T147 6806-6808 Chemical denotes RP http://purl.obolibrary.org/obo/CHEBI_141419

LitCovid-sentences

Id Subject Object Predicate Lexical cue
T146 0-7 Sentence denotes Results
T147 8-140 Sentence denotes In this study, we assumed that the incubation period (1/ωP) was the same as latent period (1/ω’P) of human infection, thus ωP = ω’P.
T148 141-1334 Sentence denotes Based on the equations of RP model, we can get the disease free equilibrium point as: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left(\frac{\varLambda_P}{m_P},0,0,0,0,0\right) $$\end{document}ΛPmP00000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F=\left[\begin{array}{cccc}0& {\beta}_P\frac{\varLambda_P}{m_P}& {\beta}_P\kappa \frac{\varLambda_P}{m_P}& {\beta}_W\frac{\varLambda_P}{m_P}\\ {}0& 0& 0& 0\\ {}0& 0& 0& 0\\ {}0& 0& 0& 0\end{array}\right],{V}^{-1}=\left[\begin{array}{cccc}\frac{1}{\omega_P+{m}_P}& 0& 0& 0\\ {}A& \frac{1}{\gamma_P+{m}_P}& 0& 0\\ {}B& 0& \frac{1}{\gamma_P^{\hbox{'}}+{m}_P}& 0\\ {}B& E& G& \frac{1}{\varepsilon}\end{array}\right] $$\end{document}F=0βPΛPmPβPκΛPmPβWΛPmP000000000000,V−1=1ωP+mP000A1γP+mP00B01γP'+mP0BEG1ε
T149 1335-3455 Sentence denotes In the matrix: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A=\frac{\left(1-{\delta}_P\right){\upomega}_P}{\left({\upomega}_P+{m}_P\right)\left({\gamma}_P+{m}_P\right)} $$\end{document}A=1−δPωPωP+mPγP+mP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ B=\frac{\delta_P{\upomega}_P}{\left({\upomega}_P+{m}_P\right)\left({\gamma}_p^{\prime }+{m}_P\right)} $$\end{document}B=δPωPωP+mPγp′+mP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ D=\frac{\left(1-{\delta}_P\right){\mu \upomega}_P}{\left({\upomega}_P+{m}_P\right)\left({\gamma}_P+{m}_P\right)\varepsilon }+\frac{\mu^{\prime }{\delta}_P{\upomega}_P}{\left({\upomega}_P+{m}_P\right)\left({\gamma}_p^{\prime }+{m}_P\right)\varepsilon } $$\end{document}D=1−δPμωPωP+mPγP+mPε+μ′δPωPωP+mPγp′+mPε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E=\frac{\mu }{\left({\gamma}_P+{m}_P\right)\varepsilon } $$\end{document}E=μγP+mPε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G=\frac{\mu^{\prime }}{\left({\gamma}_p^{\prime }+{m}_P\right)\varepsilon } $$\end{document}G=μ′γp′+mPε
T150 3456-5117 Sentence denotes By the next generation matrix approach, we can get the next generation matrix and R0 for the RP model: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F{V}^{-1}=\left[\begin{array}{cccc}{\beta}_p\frac{\varLambda_P}{m_P}A+{\beta}_P\kappa \frac{\varLambda_P}{m_P}+{\beta}_W\frac{\varLambda_P}{m_P}D& \ast & \ast & \ast \\ {}0& 0& 0& 0\\ {}0& 0& 0& 0\\ {}0& 0& 0& 0\end{array}\right] $$\end{document}FV−1=βpΛPmPA+βPκΛPmP+βWΛPmPD∗∗∗000000000000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {R}_0=\rho \left(F{V}^{-1}\right)={\beta}_P\frac{\varLambda_P}{m_P}\frac{\left(1-{\delta}_P\right){\omega}_P}{\left({\omega}_P+{m}_P\right)\left({\gamma}_P+{m}_P\right)}+{\beta}_P\kappa \frac{\varLambda_P}{m_P}\frac{\delta_P{\omega}_P}{\left({\omega}_P+{m}_P\right)\left({\gamma}_P^{\hbox{'}}+{m}_P\right)}+{\beta}_W\frac{\varLambda_P}{m_P}\frac{\left(1-{\delta}_P\right)\mu {\omega}_P}{\left({\omega}_P+{m}_P\right)\left({\gamma}_P+{m}_P\right)\varepsilon }+\beta W\frac{\varLambda_P}{m_P}\frac{\mu^{\hbox{'}}{\delta}_P{\omega}_P}{\left({\omega}_P+{m}_P\right)\left({\gamma}_P^{\hbox{'}}+{m}_P\right)\varepsilon } $$\end{document}R0=ρFV−1=βPΛPmP1−δPωPωP+mPγP+mP+βPκΛPmPδPωPωP+mPγP'+mP+βWΛPmP1−δPμωPωP+mPγP+mPε+βWΛPmPμ'δPωPωP+mPγP'+mPε
T151 5118-6336 Sentence denotes The R0 of the normalized RP model is shown as follows: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {R}_0={b}_p\frac{n_P}{m_p}\frac{\left(1-{\delta}_P\right){\omega}_P}{\left[\left(1-\delta p\right){\omega}_P+{\delta}_P{\omega}_P^{\hbox{'}}+{m}_P\right]\left({\gamma}_P+{m}_P\right)}+\kappa {b}_P\frac{n_P}{m_P}\frac{\delta_P{\omega}_P^{\hbox{'}}}{\left[\left(1-{\delta}_P\right){\omega}_P+{\delta}_P{\omega}_P^{\hbox{'}}+{m}_P\right]\left({\gamma}_P^{\hbox{'}}+{m}_P\right)}+{b}_W\frac{n_P}{m_P}\frac{\left(1-{\delta}_p\right){\omega}_p}{\left[\left(1-{\delta}_p\right){\omega}_P+{\delta}_P{\omega}_P^{\hbox{'}}+{m}_p\right]\left({\gamma}_P+{m}_P\right)}+{b}_W\frac{n_P}{m_P}\frac{c{\delta}_P{\omega}_P^{\hbox{'}}}{\left[\left(1-{\delta}_p\right){\omega}_P+{\delta}_P{\omega}_P^{\hbox{'}}+{m}_p\right]\left({\gamma}_P^{\hbox{'}}+{m}_P\right)} $$\end{document}R0=bpnPmp1−δPωP1−δpωP+δPωP'+mPγP+mP+κbPnPmPδPωP'1−δPωP+δPωP'+mPγP'+mP+bWnPmP1−δpωp1−δpωP+δPωP'+mpγP+mP+bWnPmPcδPωP'1−δpωP+δPωP'+mpγP'+mP
T152 6337-6478 Sentence denotes Our modelling results showed that the normalized RP model fitted well to the reported SARS-CoV-2 cases data (R2 = 0.512, P < 0.001) (Fig. 2).
T153 6479-6769 Sentence denotes The value of R0 was estimated of 2.30 from reservoir to person, and from person to person and 3.58 from person to person which means that the expected number of secondary infections that result from introducing a single infected individual into an otherwise susceptible population was 3.58.
T154 6770-6814 Sentence denotes Fig. 2 Curve fitting results of the RP model