PMC:7047374 / 17054-23868
Annnotations
LitCovid-PubTator
Id | Subject | Object | Predicate | Lexical cue | tao:has_database_id |
---|---|---|---|---|---|
244 | 109-114 | Species | denotes | human | Tax:9606 |
245 | 101-104 | Disease | denotes | ω’P | MESH:C000656865 |
246 | 115-124 | Disease | denotes | infection | MESH:D007239 |
247 | 136-139 | Disease | denotes | ω’P | MESH:C000656865 |
251 | 6423-6433 | Species | denotes | SARS-CoV-2 | Tax:2697049 |
252 | 6640-6660 | Disease | denotes | secondary infections | MESH:D060085 |
253 | 6699-6707 | Disease | denotes | infected | MESH:D007239 |
LitCovid-PD-FMA-UBERON
Id | Subject | Object | Predicate | Lexical cue | fma_id |
---|---|---|---|---|---|
T8 | 1031-1045 | Body_part | denotes | right],{V}^{-1 | http://purl.org/sig/ont/fma/fma8661 |
T9 | 1297-1300 | Body_part | denotes | V−1 | http://purl.org/sig/ont/fma/fma13444|http://purl.org/sig/ont/fma/fma68614 |
T11 | 3828-3834 | Body_part | denotes | V}^{-1 | http://purl.org/sig/ont/fma/fma13444|http://purl.org/sig/ont/fma/fma68614 |
T13 | 4401-4407 | Body_part | denotes | V}^{-1 | http://purl.org/sig/ont/fma/fma13444|http://purl.org/sig/ont/fma/fma68614 |
LitCovid-PD-MONDO
Id | Subject | Object | Predicate | Lexical cue | mondo_id |
---|---|---|---|---|---|
T82 | 115-124 | Disease | denotes | infection | http://purl.obolibrary.org/obo/MONDO_0005550 |
T83 | 6423-6431 | Disease | denotes | SARS-CoV | http://purl.obolibrary.org/obo/MONDO_0005091 |
T84 | 6423-6427 | Disease | denotes | SARS | http://purl.obolibrary.org/obo/MONDO_0005091 |
T85 | 6446-6448 | Disease | denotes | R2 | http://purl.obolibrary.org/obo/MONDO_0019903 |
T86 | 6650-6660 | Disease | denotes | infections | http://purl.obolibrary.org/obo/MONDO_0005550 |
LitCovid-PD-CLO
Id | Subject | Object | Predicate | Lexical cue |
---|---|---|---|---|
T150 | 109-114 | http://purl.obolibrary.org/obo/NCBITaxon_9606 | denotes | human |
T151 | 1110-1111 | http://purl.obolibrary.org/obo/CLO_0001020 | denotes | A |
T152 | 1148-1149 | http://purl.obolibrary.org/obo/CLO_0001021 | denotes | B |
T153 | 1197-1198 | http://purl.obolibrary.org/obo/CLO_0001021 | denotes | B |
T154 | 1299-1302 | http://purl.obolibrary.org/obo/CLO_0053733 | denotes | 1=1 |
T155 | 1617-1618 | http://purl.obolibrary.org/obo/CLO_0001020 | denotes | A |
T156 | 1742-1743 | http://purl.obolibrary.org/obo/CLO_0001020 | denotes | A |
T157 | 2027-2028 | http://purl.obolibrary.org/obo/CLO_0001021 | denotes | B |
T158 | 2145-2146 | http://purl.obolibrary.org/obo/CLO_0001021 | denotes | B |
T159 | 3894-3895 | http://purl.obolibrary.org/obo/CLO_0001020 | denotes | A |
T160 | 4389-4392 | http://purl.obolibrary.org/obo/CLO_0051142 | denotes | rho |
T161 | 5447-5448 | http://purl.obolibrary.org/obo/CLO_0001021 | denotes | b |
T162 | 5632-5633 | http://purl.obolibrary.org/obo/CLO_0001021 | denotes | b |
T163 | 5817-5818 | http://purl.obolibrary.org/obo/CLO_0001021 | denotes | b |
T164 | 5997-5998 | http://purl.obolibrary.org/obo/CLO_0001021 | denotes | b |
T165 | 6214-6216 | http://purl.obolibrary.org/obo/CLO_0008285 | denotes | P1 |
T166 | 6246-6249 | http://purl.obolibrary.org/obo/CLO_0008285 | denotes | P'1 |
T167 | 6246-6249 | http://purl.obolibrary.org/obo/CLO_0008286 | denotes | P'1 |
T168 | 6281-6283 | http://purl.obolibrary.org/obo/CLO_0008285 | denotes | p1 |
T169 | 6281-6283 | http://purl.obolibrary.org/obo/CLO_0008286 | denotes | p1 |
T170 | 6313-6316 | http://purl.obolibrary.org/obo/CLO_0008285 | denotes | P'1 |
T171 | 6313-6316 | http://purl.obolibrary.org/obo/CLO_0008286 | denotes | P'1 |
T172 | 6690-6691 | http://purl.obolibrary.org/obo/CLO_0001020 | denotes | a |
LitCovid-PD-CHEBI
Id | Subject | Object | Predicate | Lexical cue | chebi_id |
---|---|---|---|---|---|
T116 | 167-169 | Chemical | denotes | RP | http://purl.obolibrary.org/obo/CHEBI_141419 |
T117 | 866-870 | Chemical | denotes | beta | http://purl.obolibrary.org/obo/CHEBI_10545 |
T118 | 901-905 | Chemical | denotes | beta | http://purl.obolibrary.org/obo/CHEBI_10545 |
T119 | 943-947 | Chemical | denotes | beta | http://purl.obolibrary.org/obo/CHEBI_10545 |
T120 | 1703-1708 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T121 | 2096-2101 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T122 | 2519-2524 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T123 | 2636-2641 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T124 | 3025-3030 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T125 | 3383-3388 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T126 | 3549-3551 | Chemical | denotes | RP | http://purl.obolibrary.org/obo/CHEBI_141419 |
T127 | 3863-3867 | Chemical | denotes | beta | http://purl.obolibrary.org/obo/CHEBI_10545 |
T128 | 3898-3902 | Chemical | denotes | beta | http://purl.obolibrary.org/obo/CHEBI_10545 |
T129 | 3939-3943 | Chemical | denotes | beta | http://purl.obolibrary.org/obo/CHEBI_10545 |
T130 | 4072-4074 | Chemical | denotes | FV | http://purl.obolibrary.org/obo/CHEBI_73638 |
T131 | 4418-4422 | Chemical | denotes | beta | http://purl.obolibrary.org/obo/CHEBI_10545 |
T132 | 4529-4534 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T133 | 4554-4558 | Chemical | denotes | beta | http://purl.obolibrary.org/obo/CHEBI_10545 |
T134 | 4655-4660 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T135 | 4691-4695 | Chemical | denotes | beta | http://purl.obolibrary.org/obo/CHEBI_10545 |
T136 | 4806-4811 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T137 | 4842-4846 | Chemical | denotes | beta | http://purl.obolibrary.org/obo/CHEBI_10545 |
T138 | 4951-4956 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T139 | 5017-5019 | Chemical | denotes | FV | http://purl.obolibrary.org/obo/CHEBI_73638 |
T140 | 5143-5145 | Chemical | denotes | RP | http://purl.obolibrary.org/obo/CHEBI_141419 |
T141 | 5601-5606 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T142 | 5782-5787 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T143 | 5973-5978 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T144 | 6150-6155 | Chemical | denotes | gamma | http://purl.obolibrary.org/obo/CHEBI_30212 |
T145 | 6214-6216 | Chemical | denotes | P1 | http://purl.obolibrary.org/obo/CHEBI_60949 |
T146 | 6386-6388 | Chemical | denotes | RP | http://purl.obolibrary.org/obo/CHEBI_141419 |
T147 | 6806-6808 | Chemical | denotes | RP | http://purl.obolibrary.org/obo/CHEBI_141419 |
LitCovid-sentences
Id | Subject | Object | Predicate | Lexical cue |
---|---|---|---|---|
T146 | 0-7 | Sentence | denotes | Results |
T147 | 8-140 | Sentence | denotes | In this study, we assumed that the incubation period (1/ωP) was the same as latent period (1/ω’P) of human infection, thus ωP = ω’P. |
T148 | 141-1334 | Sentence | denotes | Based on the equations of RP model, we can get the disease free equilibrium point as: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \left(\frac{\varLambda_P}{m_P},0,0,0,0,0\right) $$\end{document}ΛPmP00000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F=\left[\begin{array}{cccc}0& {\beta}_P\frac{\varLambda_P}{m_P}& {\beta}_P\kappa \frac{\varLambda_P}{m_P}& {\beta}_W\frac{\varLambda_P}{m_P}\\ {}0& 0& 0& 0\\ {}0& 0& 0& 0\\ {}0& 0& 0& 0\end{array}\right],{V}^{-1}=\left[\begin{array}{cccc}\frac{1}{\omega_P+{m}_P}& 0& 0& 0\\ {}A& \frac{1}{\gamma_P+{m}_P}& 0& 0\\ {}B& 0& \frac{1}{\gamma_P^{\hbox{'}}+{m}_P}& 0\\ {}B& E& G& \frac{1}{\varepsilon}\end{array}\right] $$\end{document}F=0βPΛPmPβPκΛPmPβWΛPmP000000000000,V−1=1ωP+mP000A1γP+mP00B01γP'+mP0BEG1ε |
T149 | 1335-3455 | Sentence | denotes | In the matrix: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ A=\frac{\left(1-{\delta}_P\right){\upomega}_P}{\left({\upomega}_P+{m}_P\right)\left({\gamma}_P+{m}_P\right)} $$\end{document}A=1−δPωPωP+mPγP+mP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ B=\frac{\delta_P{\upomega}_P}{\left({\upomega}_P+{m}_P\right)\left({\gamma}_p^{\prime }+{m}_P\right)} $$\end{document}B=δPωPωP+mPγp′+mP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ D=\frac{\left(1-{\delta}_P\right){\mu \upomega}_P}{\left({\upomega}_P+{m}_P\right)\left({\gamma}_P+{m}_P\right)\varepsilon }+\frac{\mu^{\prime }{\delta}_P{\upomega}_P}{\left({\upomega}_P+{m}_P\right)\left({\gamma}_p^{\prime }+{m}_P\right)\varepsilon } $$\end{document}D=1−δPμωPωP+mPγP+mPε+μ′δPωPωP+mPγp′+mPε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ E=\frac{\mu }{\left({\gamma}_P+{m}_P\right)\varepsilon } $$\end{document}E=μγP+mPε\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ G=\frac{\mu^{\prime }}{\left({\gamma}_p^{\prime }+{m}_P\right)\varepsilon } $$\end{document}G=μ′γp′+mPε |
T150 | 3456-5117 | Sentence | denotes | By the next generation matrix approach, we can get the next generation matrix and R0 for the RP model: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ F{V}^{-1}=\left[\begin{array}{cccc}{\beta}_p\frac{\varLambda_P}{m_P}A+{\beta}_P\kappa \frac{\varLambda_P}{m_P}+{\beta}_W\frac{\varLambda_P}{m_P}D& \ast & \ast & \ast \\ {}0& 0& 0& 0\\ {}0& 0& 0& 0\\ {}0& 0& 0& 0\end{array}\right] $$\end{document}FV−1=βpΛPmPA+βPκΛPmP+βWΛPmPD∗∗∗000000000000\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {R}_0=\rho \left(F{V}^{-1}\right)={\beta}_P\frac{\varLambda_P}{m_P}\frac{\left(1-{\delta}_P\right){\omega}_P}{\left({\omega}_P+{m}_P\right)\left({\gamma}_P+{m}_P\right)}+{\beta}_P\kappa \frac{\varLambda_P}{m_P}\frac{\delta_P{\omega}_P}{\left({\omega}_P+{m}_P\right)\left({\gamma}_P^{\hbox{'}}+{m}_P\right)}+{\beta}_W\frac{\varLambda_P}{m_P}\frac{\left(1-{\delta}_P\right)\mu {\omega}_P}{\left({\omega}_P+{m}_P\right)\left({\gamma}_P+{m}_P\right)\varepsilon }+\beta W\frac{\varLambda_P}{m_P}\frac{\mu^{\hbox{'}}{\delta}_P{\omega}_P}{\left({\omega}_P+{m}_P\right)\left({\gamma}_P^{\hbox{'}}+{m}_P\right)\varepsilon } $$\end{document}R0=ρFV−1=βPΛPmP1−δPωPωP+mPγP+mP+βPκΛPmPδPωPωP+mPγP'+mP+βWΛPmP1−δPμωPωP+mPγP+mPε+βWΛPmPμ'δPωPωP+mPγP'+mPε |
T151 | 5118-6336 | Sentence | denotes | The R0 of the normalized RP model is shown as follows: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ {R}_0={b}_p\frac{n_P}{m_p}\frac{\left(1-{\delta}_P\right){\omega}_P}{\left[\left(1-\delta p\right){\omega}_P+{\delta}_P{\omega}_P^{\hbox{'}}+{m}_P\right]\left({\gamma}_P+{m}_P\right)}+\kappa {b}_P\frac{n_P}{m_P}\frac{\delta_P{\omega}_P^{\hbox{'}}}{\left[\left(1-{\delta}_P\right){\omega}_P+{\delta}_P{\omega}_P^{\hbox{'}}+{m}_P\right]\left({\gamma}_P^{\hbox{'}}+{m}_P\right)}+{b}_W\frac{n_P}{m_P}\frac{\left(1-{\delta}_p\right){\omega}_p}{\left[\left(1-{\delta}_p\right){\omega}_P+{\delta}_P{\omega}_P^{\hbox{'}}+{m}_p\right]\left({\gamma}_P+{m}_P\right)}+{b}_W\frac{n_P}{m_P}\frac{c{\delta}_P{\omega}_P^{\hbox{'}}}{\left[\left(1-{\delta}_p\right){\omega}_P+{\delta}_P{\omega}_P^{\hbox{'}}+{m}_p\right]\left({\gamma}_P^{\hbox{'}}+{m}_P\right)} $$\end{document}R0=bpnPmp1−δPωP1−δpωP+δPωP'+mPγP+mP+κbPnPmPδPωP'1−δPωP+δPωP'+mPγP'+mP+bWnPmP1−δpωp1−δpωP+δPωP'+mpγP+mP+bWnPmPcδPωP'1−δpωP+δPωP'+mpγP'+mP |
T152 | 6337-6478 | Sentence | denotes | Our modelling results showed that the normalized RP model fitted well to the reported SARS-CoV-2 cases data (R2 = 0.512, P < 0.001) (Fig. 2). |
T153 | 6479-6769 | Sentence | denotes | The value of R0 was estimated of 2.30 from reservoir to person, and from person to person and 3.58 from person to person which means that the expected number of secondary infections that result from introducing a single infected individual into an otherwise susceptible population was 3.58. |
T154 | 6770-6814 | Sentence | denotes | Fig. 2 Curve fitting results of the RP model |