PMC:7047374 / 16676-18796 JSONTXT

Annnotations TAB JSON ListView MergeView

    LitCovid-PubTator

    {"project":"LitCovid-PubTator","denotations":[{"id":"239","span":{"begin":179,"end":189},"obj":"Species"},{"id":"244","span":{"begin":487,"end":492},"obj":"Species"},{"id":"245","span":{"begin":479,"end":482},"obj":"Disease"},{"id":"246","span":{"begin":493,"end":502},"obj":"Disease"},{"id":"247","span":{"begin":514,"end":517},"obj":"Disease"}],"attributes":[{"id":"A239","pred":"tao:has_database_id","subj":"239","obj":"Tax:2697049"},{"id":"A244","pred":"tao:has_database_id","subj":"244","obj":"Tax:9606"},{"id":"A245","pred":"tao:has_database_id","subj":"245","obj":"MESH:C000656865"},{"id":"A246","pred":"tao:has_database_id","subj":"246","obj":"MESH:D007239"},{"id":"A247","pred":"tao:has_database_id","subj":"247","obj":"MESH:C000656865"}],"namespaces":[{"prefix":"Tax","uri":"https://www.ncbi.nlm.nih.gov/taxonomy/"},{"prefix":"MESH","uri":"https://id.nlm.nih.gov/mesh/"},{"prefix":"Gene","uri":"https://www.ncbi.nlm.nih.gov/gene/"},{"prefix":"CVCL","uri":"https://web.expasy.org/cellosaurus/CVCL_"}],"text":"were estimated by fitting the model with the collected data.\nAt the beginning of the simulation, we assumed that the prevalence of the virus in the market was 1/100000.\nSince the SARS-CoV-2 is an RNA virus, we assumed that it could be died in the environment in a short time, but it could be stay for a longer time (10 days) in the unknown hosts in the market. We set ε = 0.1.\n\nResults\nIn this study, we assumed that the incubation period (1/ωP) was the same as latent period (1/ω’P) of human infection, thus ωP = ω’P. Based on the equations of RP model, we can get the disease free equilibrium point as: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ \\left(\\frac{\\varLambda_P}{m_P},0,0,0,0,0\\right) $$\\end{document}ΛPmP00000\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ F=\\left[\\begin{array}{cccc}0\u0026 {\\beta}_P\\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_P\\kappa \\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_W\\frac{\\varLambda_P}{m_P}\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\end{array}\\right],{V}^{-1}=\\left[\\begin{array}{cccc}\\frac{1}{\\omega_P+{m}_P}\u0026 0\u0026 0\u0026 0\\\\ {}A\u0026 \\frac{1}{\\gamma_P+{m}_P}\u0026 0\u0026 0\\\\ {}B\u0026 0\u0026 \\frac{1}{\\gamma_P^{\\hbox{'}}+{m}_P}\u0026 0\\\\ {}B\u0026 E\u0026 G\u0026 \\frac{1}{\\varepsilon}\\end{array}\\right] $$\\end{document}F=0βPΛPmPβPκΛPmPβWΛPmP000000000000,V−1=1ωP+mP000A1γP+mP00B01γP'+mP0BEG1ε\nIn the matrix: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ A=\\frac{\\left(1-{\\delta}_P\\right){\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_P+{m}_P\\right)} $$\\end{document}"}

    LitCovid-PD-FMA-UBERON

    {"project":"LitCovid-PD-FMA-UBERON","denotations":[{"id":"T7","span":{"begin":196,"end":199},"obj":"Body_part"},{"id":"T8","span":{"begin":1409,"end":1423},"obj":"Body_part"},{"id":"T9","span":{"begin":1675,"end":1678},"obj":"Body_part"}],"attributes":[{"id":"A7","pred":"fma_id","subj":"T7","obj":"http://purl.org/sig/ont/fma/fma67095"},{"id":"A8","pred":"fma_id","subj":"T8","obj":"http://purl.org/sig/ont/fma/fma8661"},{"id":"A9","pred":"fma_id","subj":"T9","obj":"http://purl.org/sig/ont/fma/fma13444"},{"id":"A10","pred":"fma_id","subj":"T9","obj":"http://purl.org/sig/ont/fma/fma68614"}],"text":"were estimated by fitting the model with the collected data.\nAt the beginning of the simulation, we assumed that the prevalence of the virus in the market was 1/100000.\nSince the SARS-CoV-2 is an RNA virus, we assumed that it could be died in the environment in a short time, but it could be stay for a longer time (10 days) in the unknown hosts in the market. We set ε = 0.1.\n\nResults\nIn this study, we assumed that the incubation period (1/ωP) was the same as latent period (1/ω’P) of human infection, thus ωP = ω’P. Based on the equations of RP model, we can get the disease free equilibrium point as: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ \\left(\\frac{\\varLambda_P}{m_P},0,0,0,0,0\\right) $$\\end{document}ΛPmP00000\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ F=\\left[\\begin{array}{cccc}0\u0026 {\\beta}_P\\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_P\\kappa \\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_W\\frac{\\varLambda_P}{m_P}\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\end{array}\\right],{V}^{-1}=\\left[\\begin{array}{cccc}\\frac{1}{\\omega_P+{m}_P}\u0026 0\u0026 0\u0026 0\\\\ {}A\u0026 \\frac{1}{\\gamma_P+{m}_P}\u0026 0\u0026 0\\\\ {}B\u0026 0\u0026 \\frac{1}{\\gamma_P^{\\hbox{'}}+{m}_P}\u0026 0\\\\ {}B\u0026 E\u0026 G\u0026 \\frac{1}{\\varepsilon}\\end{array}\\right] $$\\end{document}F=0βPΛPmPβPκΛPmPβWΛPmP000000000000,V−1=1ωP+mP000A1γP+mP00B01γP'+mP0BEG1ε\nIn the matrix: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ A=\\frac{\\left(1-{\\delta}_P\\right){\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_P+{m}_P\\right)} $$\\end{document}"}

    LitCovid-PD-MONDO

    {"project":"LitCovid-PD-MONDO","denotations":[{"id":"T80","span":{"begin":179,"end":187},"obj":"Disease"},{"id":"T81","span":{"begin":179,"end":183},"obj":"Disease"},{"id":"T82","span":{"begin":493,"end":502},"obj":"Disease"}],"attributes":[{"id":"A80","pred":"mondo_id","subj":"T80","obj":"http://purl.obolibrary.org/obo/MONDO_0005091"},{"id":"A81","pred":"mondo_id","subj":"T81","obj":"http://purl.obolibrary.org/obo/MONDO_0005091"},{"id":"A82","pred":"mondo_id","subj":"T82","obj":"http://purl.obolibrary.org/obo/MONDO_0005550"}],"text":"were estimated by fitting the model with the collected data.\nAt the beginning of the simulation, we assumed that the prevalence of the virus in the market was 1/100000.\nSince the SARS-CoV-2 is an RNA virus, we assumed that it could be died in the environment in a short time, but it could be stay for a longer time (10 days) in the unknown hosts in the market. We set ε = 0.1.\n\nResults\nIn this study, we assumed that the incubation period (1/ωP) was the same as latent period (1/ω’P) of human infection, thus ωP = ω’P. Based on the equations of RP model, we can get the disease free equilibrium point as: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ \\left(\\frac{\\varLambda_P}{m_P},0,0,0,0,0\\right) $$\\end{document}ΛPmP00000\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ F=\\left[\\begin{array}{cccc}0\u0026 {\\beta}_P\\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_P\\kappa \\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_W\\frac{\\varLambda_P}{m_P}\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\end{array}\\right],{V}^{-1}=\\left[\\begin{array}{cccc}\\frac{1}{\\omega_P+{m}_P}\u0026 0\u0026 0\u0026 0\\\\ {}A\u0026 \\frac{1}{\\gamma_P+{m}_P}\u0026 0\u0026 0\\\\ {}B\u0026 0\u0026 \\frac{1}{\\gamma_P^{\\hbox{'}}+{m}_P}\u0026 0\\\\ {}B\u0026 E\u0026 G\u0026 \\frac{1}{\\varepsilon}\\end{array}\\right] $$\\end{document}F=0βPΛPmPβPκΛPmPβWΛPmP000000000000,V−1=1ωP+mP000A1γP+mP00B01γP'+mP0BEG1ε\nIn the matrix: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ A=\\frac{\\left(1-{\\delta}_P\\right){\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_P+{m}_P\\right)} $$\\end{document}"}

    LitCovid-PD-CLO

    {"project":"LitCovid-PD-CLO","denotations":[{"id":"T146","span":{"begin":135,"end":140},"obj":"http://purl.obolibrary.org/obo/NCBITaxon_10239"},{"id":"T147","span":{"begin":200,"end":205},"obj":"http://purl.obolibrary.org/obo/NCBITaxon_10239"},{"id":"T148","span":{"begin":262,"end":263},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T149","span":{"begin":301,"end":302},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T150","span":{"begin":487,"end":492},"obj":"http://purl.obolibrary.org/obo/NCBITaxon_9606"},{"id":"T151","span":{"begin":1488,"end":1489},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"},{"id":"T152","span":{"begin":1526,"end":1527},"obj":"http://purl.obolibrary.org/obo/CLO_0001021"},{"id":"T153","span":{"begin":1575,"end":1576},"obj":"http://purl.obolibrary.org/obo/CLO_0001021"},{"id":"T154","span":{"begin":1677,"end":1680},"obj":"http://purl.obolibrary.org/obo/CLO_0053733"},{"id":"T155","span":{"begin":1995,"end":1996},"obj":"http://purl.obolibrary.org/obo/CLO_0001020"}],"text":"were estimated by fitting the model with the collected data.\nAt the beginning of the simulation, we assumed that the prevalence of the virus in the market was 1/100000.\nSince the SARS-CoV-2 is an RNA virus, we assumed that it could be died in the environment in a short time, but it could be stay for a longer time (10 days) in the unknown hosts in the market. We set ε = 0.1.\n\nResults\nIn this study, we assumed that the incubation period (1/ωP) was the same as latent period (1/ω’P) of human infection, thus ωP = ω’P. Based on the equations of RP model, we can get the disease free equilibrium point as: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ \\left(\\frac{\\varLambda_P}{m_P},0,0,0,0,0\\right) $$\\end{document}ΛPmP00000\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ F=\\left[\\begin{array}{cccc}0\u0026 {\\beta}_P\\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_P\\kappa \\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_W\\frac{\\varLambda_P}{m_P}\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\end{array}\\right],{V}^{-1}=\\left[\\begin{array}{cccc}\\frac{1}{\\omega_P+{m}_P}\u0026 0\u0026 0\u0026 0\\\\ {}A\u0026 \\frac{1}{\\gamma_P+{m}_P}\u0026 0\u0026 0\\\\ {}B\u0026 0\u0026 \\frac{1}{\\gamma_P^{\\hbox{'}}+{m}_P}\u0026 0\\\\ {}B\u0026 E\u0026 G\u0026 \\frac{1}{\\varepsilon}\\end{array}\\right] $$\\end{document}F=0βPΛPmPβPκΛPmPβWΛPmP000000000000,V−1=1ωP+mP000A1γP+mP00B01γP'+mP0BEG1ε\nIn the matrix: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ A=\\frac{\\left(1-{\\delta}_P\\right){\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_P+{m}_P\\right)} $$\\end{document}"}

    LitCovid-PD-CHEBI

    {"project":"LitCovid-PD-CHEBI","denotations":[{"id":"T116","span":{"begin":545,"end":547},"obj":"Chemical"},{"id":"T117","span":{"begin":1244,"end":1248},"obj":"Chemical"},{"id":"T118","span":{"begin":1279,"end":1283},"obj":"Chemical"},{"id":"T119","span":{"begin":1321,"end":1325},"obj":"Chemical"},{"id":"T120","span":{"begin":2081,"end":2086},"obj":"Chemical"}],"attributes":[{"id":"A116","pred":"chebi_id","subj":"T116","obj":"http://purl.obolibrary.org/obo/CHEBI_141419"},{"id":"A117","pred":"chebi_id","subj":"T117","obj":"http://purl.obolibrary.org/obo/CHEBI_10545"},{"id":"A118","pred":"chebi_id","subj":"T118","obj":"http://purl.obolibrary.org/obo/CHEBI_10545"},{"id":"A119","pred":"chebi_id","subj":"T119","obj":"http://purl.obolibrary.org/obo/CHEBI_10545"},{"id":"A120","pred":"chebi_id","subj":"T120","obj":"http://purl.obolibrary.org/obo/CHEBI_30212"}],"text":"were estimated by fitting the model with the collected data.\nAt the beginning of the simulation, we assumed that the prevalence of the virus in the market was 1/100000.\nSince the SARS-CoV-2 is an RNA virus, we assumed that it could be died in the environment in a short time, but it could be stay for a longer time (10 days) in the unknown hosts in the market. We set ε = 0.1.\n\nResults\nIn this study, we assumed that the incubation period (1/ωP) was the same as latent period (1/ω’P) of human infection, thus ωP = ω’P. Based on the equations of RP model, we can get the disease free equilibrium point as: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ \\left(\\frac{\\varLambda_P}{m_P},0,0,0,0,0\\right) $$\\end{document}ΛPmP00000\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ F=\\left[\\begin{array}{cccc}0\u0026 {\\beta}_P\\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_P\\kappa \\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_W\\frac{\\varLambda_P}{m_P}\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\end{array}\\right],{V}^{-1}=\\left[\\begin{array}{cccc}\\frac{1}{\\omega_P+{m}_P}\u0026 0\u0026 0\u0026 0\\\\ {}A\u0026 \\frac{1}{\\gamma_P+{m}_P}\u0026 0\u0026 0\\\\ {}B\u0026 0\u0026 \\frac{1}{\\gamma_P^{\\hbox{'}}+{m}_P}\u0026 0\\\\ {}B\u0026 E\u0026 G\u0026 \\frac{1}{\\varepsilon}\\end{array}\\right] $$\\end{document}F=0βPΛPmPβPκΛPmPβWΛPmP000000000000,V−1=1ωP+mP000A1γP+mP00B01γP'+mP0BEG1ε\nIn the matrix: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ A=\\frac{\\left(1-{\\delta}_P\\right){\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_P+{m}_P\\right)} $$\\end{document}"}

    LitCovid-sentences

    {"project":"LitCovid-sentences","denotations":[{"id":"T143","span":{"begin":61,"end":168},"obj":"Sentence"},{"id":"T144","span":{"begin":169,"end":360},"obj":"Sentence"},{"id":"T145","span":{"begin":361,"end":376},"obj":"Sentence"},{"id":"T146","span":{"begin":378,"end":385},"obj":"Sentence"},{"id":"T147","span":{"begin":386,"end":518},"obj":"Sentence"},{"id":"T148","span":{"begin":519,"end":1712},"obj":"Sentence"}],"namespaces":[{"prefix":"_base","uri":"http://pubannotation.org/ontology/tao.owl#"}],"text":"were estimated by fitting the model with the collected data.\nAt the beginning of the simulation, we assumed that the prevalence of the virus in the market was 1/100000.\nSince the SARS-CoV-2 is an RNA virus, we assumed that it could be died in the environment in a short time, but it could be stay for a longer time (10 days) in the unknown hosts in the market. We set ε = 0.1.\n\nResults\nIn this study, we assumed that the incubation period (1/ωP) was the same as latent period (1/ω’P) of human infection, thus ωP = ω’P. Based on the equations of RP model, we can get the disease free equilibrium point as: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ \\left(\\frac{\\varLambda_P}{m_P},0,0,0,0,0\\right) $$\\end{document}ΛPmP00000\\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ F=\\left[\\begin{array}{cccc}0\u0026 {\\beta}_P\\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_P\\kappa \\frac{\\varLambda_P}{m_P}\u0026 {\\beta}_W\\frac{\\varLambda_P}{m_P}\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\\\ {}0\u0026 0\u0026 0\u0026 0\\end{array}\\right],{V}^{-1}=\\left[\\begin{array}{cccc}\\frac{1}{\\omega_P+{m}_P}\u0026 0\u0026 0\u0026 0\\\\ {}A\u0026 \\frac{1}{\\gamma_P+{m}_P}\u0026 0\u0026 0\\\\ {}B\u0026 0\u0026 \\frac{1}{\\gamma_P^{\\hbox{'}}+{m}_P}\u0026 0\\\\ {}B\u0026 E\u0026 G\u0026 \\frac{1}{\\varepsilon}\\end{array}\\right] $$\\end{document}F=0βPΛPmPβPκΛPmPβWΛPmP000000000000,V−1=1ωP+mP000A1γP+mP00B01γP'+mP0BEG1ε\nIn the matrix: \\documentclass[12pt]{minimal} \t\t\t\t\\usepackage{amsmath} \t\t\t\t\\usepackage{wasysym} \t\t\t\t\\usepackage{amsfonts} \t\t\t\t\\usepackage{amssymb} \t\t\t\t\\usepackage{amsbsy} \t\t\t\t\\usepackage{mathrsfs} \t\t\t\t\\usepackage{upgreek} \t\t\t\t\\setlength{\\oddsidemargin}{-69pt} \t\t\t\t\\begin{document}$$ A=\\frac{\\left(1-{\\delta}_P\\right){\\upomega}_P}{\\left({\\upomega}_P+{m}_P\\right)\\left({\\gamma}_P+{m}_P\\right)} $$\\end{document}"}