PMC:7033348 / 9219-9851
Annnotations
LitCovid-PD-CLO
Id | Subject | Object | Predicate | Lexical cue |
---|---|---|---|---|
T48 | 229-231 | http://purl.obolibrary.org/obo/CLO_0009718 | denotes | yt |
T49 | 269-270 | http://purl.obolibrary.org/obo/CLO_0001020 | denotes | a |
T50 | 573-575 | http://purl.obolibrary.org/obo/CLO_0009718 | denotes | yt |
LitCovid-PD-CHEBI
Id | Subject | Object | Predicate | Lexical cue | chebi_id |
---|---|---|---|---|---|
T7 | 31-39 | Chemical | denotes | solution | http://purl.obolibrary.org/obo/CHEBI_75958 |
T8 | 502-510 | Chemical | denotes | solution | http://purl.obolibrary.org/obo/CHEBI_75958 |
LitCovid-sentences
Id | Subject | Object | Predicate | Lexical cue |
---|---|---|---|---|
T56 | 0-99 | Sentence | denotes | We estimate the best-fit model solution to the reported data using nonlinear least squares fitting. |
T57 | 100-482 | Sentence | denotes | This process yields the set of model parameters Θ that minimizes the sum of squared errors between the model f(t,Θ) and the data yt; where ΘGLM = (r, p, K), ΘRich = (r, a, K), and ΘSub = (r, p, K 0 , q, C thr) correspond to the estimated parameter sets for the GLM, the Richards model, and the sub-epidemic model, respectively; parameter descriptions are provided in the Supplement. |
T58 | 483-578 | Sentence | denotes | Thus, the best-fit solution f(t,Θˆ) is defined by the parameter set Θˆ=argmin∑t=1n(f(t,Θ)−yt)2. |
T59 | 579-632 | Sentence | denotes | We fix the initial condition to the first data point. |