> top > docs > PMC:7033348 > spans > 8652-10475 > annotations

PMC:7033348 / 8652-10475 JSONTXT

Annnotations TAB JSON ListView MergeView

LitCovid-PD-CLO

Id Subject Object Predicate Lexical cue
T45 258-260 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T46 348-350 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T47 519-521 http://purl.obolibrary.org/obo/CLO_0050507 denotes 22
T48 796-798 http://purl.obolibrary.org/obo/CLO_0009718 denotes yt
T49 836-837 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T50 1140-1142 http://purl.obolibrary.org/obo/CLO_0009718 denotes yt
T51 1212-1213 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T52 1307-1308 http://purl.obolibrary.org/obo/CLO_0001020 denotes a
T53 1334-1335 http://purl.obolibrary.org/obo/CLO_0001020 denotes A
T54 1707-1708 http://purl.obolibrary.org/obo/CLO_0001020 denotes a

LitCovid-PD-CHEBI

Id Subject Object Predicate Lexical cue chebi_id
T7 598-606 Chemical denotes solution http://purl.obolibrary.org/obo/CHEBI_75958
T8 1069-1077 Chemical denotes solution http://purl.obolibrary.org/obo/CHEBI_75958
T9 1288-1296 Chemical denotes solution http://purl.obolibrary.org/obo/CHEBI_75958

LitCovid-sentences

Id Subject Object Predicate Lexical cue
T51 0-20 Sentence denotes Short-term forecasts
T52 21-139 Sentence denotes We calibrate each model to the daily cumulative reported case counts for Hubei and other provinces (all except Hubei).
T53 140-267 Sentence denotes While the outbreak began in December 2019, available data on cumulative case counts are available starting on January 22, 2020.
T54 268-377 Sentence denotes Therefore, the first calibration process includes 15 observations: from January 22, 2020 to February 5, 2020.
T55 378-566 Sentence denotes Each subsequent calibration period increases by one day with each new published daily data, with the last calibration period between January 22, 2020 and February 9, 2020 (19 data points).
T56 567-666 Sentence denotes We estimate the best-fit model solution to the reported data using nonlinear least squares fitting.
T57 667-1049 Sentence denotes This process yields the set of model parameters Θ that minimizes the sum of squared errors between the model f(t,Θ) and the data yt; where ΘGLM = (r, p, K), ΘRich = (r, a, K), and ΘSub = (r, p, K 0 , q, C thr) correspond to the estimated parameter sets for the GLM, the Richards model, and the sub-epidemic model, respectively; parameter descriptions are provided in the Supplement.
T58 1050-1145 Sentence denotes Thus, the best-fit solution f(t,Θˆ) is defined by the parameter set Θˆ=argmin∑t=1n(f(t,Θ)−yt)2.
T59 1146-1199 Sentence denotes We fix the initial condition to the first data point.
T60 1200-1333 Sentence denotes We then use a parametric bootstrap approach to quantify uncertainty around the best-fit solution, assuming a Poisson error structure.
T61 1334-1440 Sentence denotes A detailed description of this method is provided in prior studies (Chowell, 2017; Roosa & Chowell, 2019).
T62 1441-1596 Sentence denotes The models are refitted to the M = 200 bootstrap datasets to obtain M parameter sets, which are used to define 95% confidence intervals for each parameter.
T63 1597-1739 Sentence denotes Each of the M model solutions to the bootstrap curves is used to generate m = 30 simulations extended through a forecasting period of 15 days.
T64 1740-1823 Sentence denotes These 6000 (M × m) curves construct the 95% prediction intervals for the forecasts.