
PMC:6610382 / 1419-2507
Annnotations
0_colil
{"project":"0_colil","denotations":[{"id":"31035818-28127990-4162","span":{"begin":747,"end":748},"obj":"28127990"}],"text":"Drug discovery is a challenging enterprise filled with stories of dramatic cures and heartbreaking clinical trial failures. The classical approach to drug development begins with “target identification,” whereby a particular molecule (most often a protein) is thought to have clinical significance. Identification could occur serendipitously but is typically the result of hypothesis-driven basic science research in model systems, such as mice. Ultimately, a clinically oriented team becomes convinced that the target has potential and sets in motion an array of biochemists and pharmacologists in order to characterize the target and develop screening tools to try to identify small molecules that will bind to and disrupt the target’s function.1 The story for monoclonal antibodies and newly developed gene therapies is similar, but promising leads may fail at any stage in the process. Even more concerning, these therapies may make it to clinical trials but ultimately lack the benefit that was anticipated, suggesting that the original target was not after all, an effective target."}
2_test
{"project":"2_test","denotations":[{"id":"31035818-28127990-28641011","span":{"begin":747,"end":748},"obj":"28127990"}],"text":"Drug discovery is a challenging enterprise filled with stories of dramatic cures and heartbreaking clinical trial failures. The classical approach to drug development begins with “target identification,” whereby a particular molecule (most often a protein) is thought to have clinical significance. Identification could occur serendipitously but is typically the result of hypothesis-driven basic science research in model systems, such as mice. Ultimately, a clinically oriented team becomes convinced that the target has potential and sets in motion an array of biochemists and pharmacologists in order to characterize the target and develop screening tools to try to identify small molecules that will bind to and disrupt the target’s function.1 The story for monoclonal antibodies and newly developed gene therapies is similar, but promising leads may fail at any stage in the process. Even more concerning, these therapies may make it to clinical trials but ultimately lack the benefit that was anticipated, suggesting that the original target was not after all, an effective target."}
MyTest
{"project":"MyTest","denotations":[{"id":"31035818-28127990-28641011","span":{"begin":747,"end":749},"obj":"28127990"}],"namespaces":[{"prefix":"_base","uri":"https://www.uniprot.org/uniprot/testbase"},{"prefix":"UniProtKB","uri":"https://www.uniprot.org/uniprot/"},{"prefix":"uniprot","uri":"https://www.uniprot.org/uniprotkb/"}],"text":"Drug discovery is a challenging enterprise filled with stories of dramatic cures and heartbreaking clinical trial failures. The classical approach to drug development begins with “target identification,” whereby a particular molecule (most often a protein) is thought to have clinical significance. Identification could occur serendipitously but is typically the result of hypothesis-driven basic science research in model systems, such as mice. Ultimately, a clinically oriented team becomes convinced that the target has potential and sets in motion an array of biochemists and pharmacologists in order to characterize the target and develop screening tools to try to identify small molecules that will bind to and disrupt the target’s function.1 The story for monoclonal antibodies and newly developed gene therapies is similar, but promising leads may fail at any stage in the process. Even more concerning, these therapies may make it to clinical trials but ultimately lack the benefit that was anticipated, suggesting that the original target was not after all, an effective target."}