PMC:5919942 / 31850-33803
Annnotations
TEST0
{"project":"TEST0","denotations":[{"id":"29731705-122-130-826834","span":{"begin":694,"end":698},"obj":"[\"23313571\"]"}],"text":"However there are several limitations of our study which have to be acknowledged. First, we didn't measure positive/negative emotion directly via subjective ratings and the inference about the involvement of affective/emotional processes in price framing effect relied largely on observed electrophysiological activities during the task. This kind of reasoning is called reverse inference. Though reverse inference is extremely prevalent in cognitive neuroscience and neuromarketing, its validity has been regarded by some researchers as limited (e.g., Lee et al., 2017). Yet some researchers asserted that reverse inference was not intrinsically weak when applied with caution (e.g., Hutzler, 2014). Future studies are needed to replicate our findings by taking subjective measures of emotion into account, which allow a direct comparison between behavioral and neural results and draw conclusions in a more comprehensive way. Second, the difficulty of calculating the total price was not strictly controlled across different experimental conditions. It might be relatively easier to calculate the total price in ZP vs. NP, since the former condition contained a zero-priced component. Thus it could be argued that the differences in RT, LPP amplitude and purchase rate between ZP and NP might be partly due to the differentiated cognitive demand induced by calculating the total price. It was difficult to rule out the influence of task difficulty in the current research paradigm. However, we conjecture that the higher purchase rate in ZP vs. NP could not be simply attributed to the lower task difficulty since task difficulty has been found to be associated more often with cognitive and behavioral efficiency (as reflected in RT and accuracy) but less often with purchase decision outcome. In addition, contrary to the present study, higher task difficulty and cognitive load could also be accompanied by higher purchase rate (Wang et al., 2016)."}
0_colil
{"project":"0_colil","denotations":[{"id":"29731705-23313571-826834","span":{"begin":694,"end":698},"obj":"23313571"}],"text":"However there are several limitations of our study which have to be acknowledged. First, we didn't measure positive/negative emotion directly via subjective ratings and the inference about the involvement of affective/emotional processes in price framing effect relied largely on observed electrophysiological activities during the task. This kind of reasoning is called reverse inference. Though reverse inference is extremely prevalent in cognitive neuroscience and neuromarketing, its validity has been regarded by some researchers as limited (e.g., Lee et al., 2017). Yet some researchers asserted that reverse inference was not intrinsically weak when applied with caution (e.g., Hutzler, 2014). Future studies are needed to replicate our findings by taking subjective measures of emotion into account, which allow a direct comparison between behavioral and neural results and draw conclusions in a more comprehensive way. Second, the difficulty of calculating the total price was not strictly controlled across different experimental conditions. It might be relatively easier to calculate the total price in ZP vs. NP, since the former condition contained a zero-priced component. Thus it could be argued that the differences in RT, LPP amplitude and purchase rate between ZP and NP might be partly due to the differentiated cognitive demand induced by calculating the total price. It was difficult to rule out the influence of task difficulty in the current research paradigm. However, we conjecture that the higher purchase rate in ZP vs. NP could not be simply attributed to the lower task difficulty since task difficulty has been found to be associated more often with cognitive and behavioral efficiency (as reflected in RT and accuracy) but less often with purchase decision outcome. In addition, contrary to the present study, higher task difficulty and cognitive load could also be accompanied by higher purchase rate (Wang et al., 2016)."}
2_test
{"project":"2_test","denotations":[{"id":"29731705-23313571-38674728","span":{"begin":694,"end":698},"obj":"23313571"}],"text":"However there are several limitations of our study which have to be acknowledged. First, we didn't measure positive/negative emotion directly via subjective ratings and the inference about the involvement of affective/emotional processes in price framing effect relied largely on observed electrophysiological activities during the task. This kind of reasoning is called reverse inference. Though reverse inference is extremely prevalent in cognitive neuroscience and neuromarketing, its validity has been regarded by some researchers as limited (e.g., Lee et al., 2017). Yet some researchers asserted that reverse inference was not intrinsically weak when applied with caution (e.g., Hutzler, 2014). Future studies are needed to replicate our findings by taking subjective measures of emotion into account, which allow a direct comparison between behavioral and neural results and draw conclusions in a more comprehensive way. Second, the difficulty of calculating the total price was not strictly controlled across different experimental conditions. It might be relatively easier to calculate the total price in ZP vs. NP, since the former condition contained a zero-priced component. Thus it could be argued that the differences in RT, LPP amplitude and purchase rate between ZP and NP might be partly due to the differentiated cognitive demand induced by calculating the total price. It was difficult to rule out the influence of task difficulty in the current research paradigm. However, we conjecture that the higher purchase rate in ZP vs. NP could not be simply attributed to the lower task difficulty since task difficulty has been found to be associated more often with cognitive and behavioral efficiency (as reflected in RT and accuracy) but less often with purchase decision outcome. In addition, contrary to the present study, higher task difficulty and cognitive load could also be accompanied by higher purchase rate (Wang et al., 2016)."}