PMC:5374364 / 9631-14424 JSONTXT

Annnotations TAB JSON ListView MergeView

{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/5374364","sourcedb":"PMC","sourceid":"5374364","source_url":"https://www.ncbi.nlm.nih.gov/pmc/5374364","text":"2.3. Biological/Physiological Effects Identified by DNA Microarray Assays\nBiological/physiological effects and medicinal efficacy have been examined by DMA. To achieve this, a variety of assay systems have been used (Table 1), such as with different species (humans; animals, such as the chicken, dog, guinea pig, mouse, and rat; or microbes such as yeast and bacteria), tissues (brain, intestine, kidney, liver, lung, muscle, peripheral blood, or spleen) and cells (adenocarcinoma cells, alveolar epithelial cells, breast carcinoma cells, colon carcinoma cells, colorectal cancer cells, dendritic cells, dermal fibroblasts, endothelial cells, gingival fibroblasts, head and neck squamous cell carcinoma (HNSCC) cells, hepatoma cells, human umbilical vein endothelial cells (HUVECs), keratinocytes, lens tumor cells, leukemia cells, macrophages, neuroglial cells, oral squamous cell carcinoma cells, osteosarcoma cells, pancreatic cancer cells, peripheral blood mononuclear cells (PBMCs), preadipoctyes, prostate cancer cells, rat intestinal microvascular endothelial cells (RIMECs), retinal cells, or skin fibroblasts); the assays examining the statuses in vitro (using cultured normal or cancer cells, or yeast or bacterial cells, such as A549, BxPc-3, Caco-2, colo 205, DU145, ECV304, H9c2, HaCaT, HepG2, HCT-116, H4IIE, HL-60, Hs27, HT-29, J774.1, LT97, MCF-7, MDA-MB-231, MG-63, MonoMac6, NG108-15, PC-3, RAW 264.7, THP-1, 3T3-L1, UM1, UMSCC1, and YPK-1/4 cells) or in vivo (using tissues or cells from animals, or from healthy or diseased individuals); and DNA microarray platforms and assay protocols, such as those from ABioscience, Affymetrix, Agilent Technologies, Applied Biosystems, Clontech, GE Healthcare, Illumina, Mitsubishi Rayon, SuperArray, and Takara, or customized ones (see Section 3).\nThe biological/physiological effects analyzed are as follows: the functions/effects examined are angiogenesis modulation, anti-adipogenesis, anti-atherosclerosis/anti-arteriosclerosis, antibiotic effect, anti-carcinogenesis/anti-metastasis, antidepressant effect, anti-diabetic/anti-obesity effect, anti-endotoxin action, anti-fibrotic effect, anti-inflammation/anti-remodeling, anti-mitotic effect, apoptosis, cardioprotection, cell proliferation/differentiation, chemoprevention, cytotoxicity, DNA damage prevention, hepatotoxicity, immune response, inflammatory response, leukocyte function, neuromodulation/neuroprotection, skin aging prevention, stress response, and wound healing. The assays revealed the receptor-related signaling, such as by aryl hydrocarbon receptor (AhR), insulin receptor, peroxisome proliferator-activated receptor (PPAR), and Toll-like receptor (TLR), or hormone/growth-factor-related signaling, such as estrogen signaling, IFα/IFβ signaling, insulin-like growth factor 1 (IGF-1) signaling, and tumor necrosis factor α (TNF-α)/tumor growth factor β1 (TGF-β1) signaling, or signal-mediator-related signaling, such as caspase-3, extracellular signal-regulated kinase (ERK), mitogen-activated protein kinase (MAPK), nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB), p53, and Wnt, or diseases/disorders, such as Alzheimer’s disease, circulation disorders, gynecological diseases, lipid metabolism disorders, obstructive lung disease, and Parkinson’s disease.\nMeanwhile, the functions/effects identified by the analysis of pure chemicals (summarized in Table 2) are as follows: anti-carcinogenesis (actein, berberine, biochanin A, celastrol, chelidonine, genistein, ginsenoside Rg3, grape antioxidant dietary fiber, grifolin, lycopene, paeoniflorin, PGG, plant phospholipid/lipid conjugate, plumbagin, polysaccharide-K (Krestin), polysaccharides, PUFAs, quercetin and salvianolic acid B); anti-atherosclerosis (brefeldin A and phytosterol mixture); anti-inflammation (ergosterol peroxide, glycyrrhizin, and paeonol/paeoniflorin/albiflorin); immune response (celastrol, obovatol, and triptolide); anti-diabetic/anti-obesity response ((−)-hydroxycitric acid and ginsenoside Re); anti-infectious (berberine); apoptosis (curcumin, emodin, β-hydroxyisovalerylshikonin, tanshinone IIA, and 2,4,3′,5′-tetramethoxystilbene); anti-oxidative response (curcumin); adipogenesis/angiogenesis (aculeatin and sparstolonin B); cardio-, neuro-, or vasoprotection (ligustrazine, oil palm phenolics, resveratrol, and saffron); cell proliferation (PUFAs); chemoprevention (boswellic acid, myricetin, and sulforaphane); estrogen signaling (3,3′-diindolylmethane, ginsenosides F1/Rb1/Rg1/Rh1, and glycyrrhizin); ischemic stroke (baicalin/deoxycholic acid/jasminoidin); hypoxia (paeonol); life-span extension (curcumin and diallyl trisulfide); lipid metabolism (sesamin/episesamin/sesamolin); and Rho/ROCK (Rho-associated protein kinase) signaling (tanshinone IIA).","divisions":[{"label":"Title","span":{"begin":0,"end":73}}],"tracks":[]}