PMC:5118421 / 14923-15834
Annnotations
TEST0
{"project":"TEST0","denotations":[{"id":"27920779-75-81-3100227","span":{"begin":421,"end":423},"obj":"[\"7651532\"]"}],"text":"In addition to comparing observed/expected ratios for AGY and TCN codons, we also compared absolute numbers of these codons in mouse and human germline VH, Vκ, and Vλ genes. Despite a greater number of possible TCN codons, the bias favoring AGY Ser codons was still evident in all three major families of V genes for both species (Figures 1B,C). These abundance data are in agreement with data reported by Wagner et al. (17), showing that CDR AGY codons outnumber TCN codons at most CDR positions. Finally, the serine codon bias was not restricted to the idiosyncrasies of the Kabat CDR/FR definitions used in our analyses because it also applied to CDRs defined by the IMGT system (Figure S1 in Supplementary Material). Collectively, these results show that high frequencies of germline AGY serine codons in CDRs cannot be explained solely by a selection pressure favoring germline-encoded CDR serine residues."}
2_test
{"project":"2_test","denotations":[{"id":"27920779-7651532-34707950","span":{"begin":421,"end":423},"obj":"7651532"}],"text":"In addition to comparing observed/expected ratios for AGY and TCN codons, we also compared absolute numbers of these codons in mouse and human germline VH, Vκ, and Vλ genes. Despite a greater number of possible TCN codons, the bias favoring AGY Ser codons was still evident in all three major families of V genes for both species (Figures 1B,C). These abundance data are in agreement with data reported by Wagner et al. (17), showing that CDR AGY codons outnumber TCN codons at most CDR positions. Finally, the serine codon bias was not restricted to the idiosyncrasies of the Kabat CDR/FR definitions used in our analyses because it also applied to CDRs defined by the IMGT system (Figure S1 in Supplementary Material). Collectively, these results show that high frequencies of germline AGY serine codons in CDRs cannot be explained solely by a selection pressure favoring germline-encoded CDR serine residues."}
MyTest
{"project":"MyTest","denotations":[{"id":"27920779-7651532-34707950","span":{"begin":421,"end":423},"obj":"7651532"}],"namespaces":[{"prefix":"_base","uri":"https://www.uniprot.org/uniprot/testbase"},{"prefix":"UniProtKB","uri":"https://www.uniprot.org/uniprot/"},{"prefix":"uniprot","uri":"https://www.uniprot.org/uniprotkb/"}],"text":"In addition to comparing observed/expected ratios for AGY and TCN codons, we also compared absolute numbers of these codons in mouse and human germline VH, Vκ, and Vλ genes. Despite a greater number of possible TCN codons, the bias favoring AGY Ser codons was still evident in all three major families of V genes for both species (Figures 1B,C). These abundance data are in agreement with data reported by Wagner et al. (17), showing that CDR AGY codons outnumber TCN codons at most CDR positions. Finally, the serine codon bias was not restricted to the idiosyncrasies of the Kabat CDR/FR definitions used in our analyses because it also applied to CDRs defined by the IMGT system (Figure S1 in Supplementary Material). Collectively, these results show that high frequencies of germline AGY serine codons in CDRs cannot be explained solely by a selection pressure favoring germline-encoded CDR serine residues."}