
PMC:4996378 / 24199-25844
Annnotations
{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/4996378","sourcedb":"PMC","sourceid":"4996378","source_url":"https://www.ncbi.nlm.nih.gov/pmc/4996378","text":"3.3. Instrument-Free Arraying of “Kilo-Giga”-Dense Microarrays with High Resolution\nThe printing of higher density protein microarrays is highly desirable for global proteome analysis. Similarly, ultrahigh density DNA or RNA microarrays are a prerequisite for on-chip novel DNA or RNA probe (i.e., aptamer) screening purposes, which deal with huge aptamer libraries with up to 1015 variants. Conventional microarrays fabricated by a robotic spotter or a photolithographic approach have a number of immobilized spots on a single array substrate that is limited to the 105 order. However, µIP can be considered as an ultrahigh-throughput printing tool for the instrument-free and inexpensive printing of arrays of biomolecules. Owing to the fundamental nature of µIP, this technology would allow the printing of spotter-free ultra-small microarrays while maintaining a high resolution and, thus, can overcome the low-medium-density limitations of current methods. Using µIP, we demonstrated the printing of in situ-transcribed messenger RNAs onto part of a 30 mm × 30 mm glass substrate with a density of 40,000 spots per mm2, which to our knowledge, is the highest ever density reported for microarrays. To demonstrate the high-resolution characteristic of µIP, the printing of an arbitrary shape, a pattern comprising the letters “RNA” with a line width of 7.5 µm, was also achieved [31]. Therefore, µIP technology is considered to provide an instrument (spotter)-free platform for generating in situ-synthesized biomolecular (messenger RNA/protein) microarrays with an ultrahigh density (kilo-giga scale) and a high resolution (sub-micrometer).","divisions":[{"label":"Title","span":{"begin":0,"end":83}}],"tracks":[]}