PMC:4979053 / 11008-14829
Annnotations
{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/4979053","sourcedb":"PMC","sourceid":"4979053","source_url":"https://www.ncbi.nlm.nih.gov/pmc/4979053","text":"2.4.1. Intra-Platform Reliability\nTo assess the reliability of the three miRNA microarray platforms, pair-wise concordance correlation coefficients [17] were computed for all possible pairs of technical replicates for all platforms, within each sample. The CCC ρc between two series of n measurements x and y is defined as: (1) ρc=2σxyσx2+σy2+μx−μy2=2ρσxσyσx2+σy2+μx−μy2 where ρ=σxyσxσy=∑i=1n(xi−x¯)(yi−y¯)∑i=1n(xi−x¯)2∑i=1n(yi−y¯)2 is the Pearson correlation coefficient between x and y, μx=∑i=1nxin and μy=∑i=1nyin are the sample means of x and y and σx2=∑i=1n(xi−x¯)2n−1 and σy2=∑i=1n(yi−y¯)2n−1 are the sample variances of x and y. Unlike the correlation coefficients, which only can give information about the existence of a linear relationship between two measurement methods, the CCC provides information on both precision (best-fit line) and accuracy (how far the best-fit line deviates from the concordance line) and is thus a better measure to assess platform reliability [30]. Additionally, the pairwise CCCs were combined within each sample and platform into an overall measure of reliability, the overall concordance correlation coefficient (OCCC) [31], a weighted mean of pairwise CCCs, which is defined as follows: (2) ρc0=∑j=1J−1∑k=j+1Jξjkρcjk∑j=1J−1∑k=j+1Jξjk where ρcjk is the standard Lin’s CCC between j-th and k-th replicate measurement series (in this study, these are the replicate arrays), and ξjk are the weights, specific for each paired comparison:(3) ξjk=σj2+σk2+μj−μk2\nConfidence intervals for the OCCC were computed using the bootstrap [32]. Specifically, 1000 bootstrap samples were extracted, and for each of these samples, sample means, variances, covariances, CCC and OCCC were computed. Then, using the empirical distribution of the bootstrap, estimates of the OCCC percentile confidence intervals at 95% were estimated.\nTo evaluate whether pairs of technical replicates are actually in agreement, the non-inferiority approach proposed by Liao and colleagues [33] for gene expression microarrays was followed. This approach consists of defining a threshold, or lower-bound, ρc(CL) reflecting the minimal value that the CCC should assume to conclude that two methods agree and then testing the following hypothesis: (4) H0:ρc≤ρc(CL)vs.H1:ρc\u003eρc(CL)\nThis can be done using the confidence intervals for both CCC and OCCC, interpreting the results as follows: if the lower confidence bound falls below ρc(CL), then the null hypothesis cannot be rejected and the two replicates cannot be said to be in agreement; otherwise, the two replicates are in agreement. To determine the value of ρCL, the authors define the minimum thresholds of precision and accuracy, and then, since the CCC can be seen as a product of a precision and accuracy term, ρc(CL) is computed as the product of these two thresholds. In their example, they propose a threshold of 0.90, yet in this paper, we have chosen to use the value of 0.96, according to the following formula: (5) ρc(CL)=2ρCLvCL+vCL−1+uCL2=2*0.980.9+0.9−1+0.152=0.9638≈0.96 where v=σ1/σ2 represents the scale shift between the two measurements series and u=(μ1−μ2)/σ1σ2 is the location shift relative to the scale. The reason for the choice of these values is subjective, but in this case, there has been the attempt to be conservative: a higher value for ρCL means a relationship between technical replicates as linear as possible, though leaving space for small departures due to ineffective probes or small experimental effects. On the other hand, increasing vCL to 0.9 is due to the fact that miRNA measurements are assumed to be less variable than gene expression, so that technical replicates may show very similar patterns of variability. Only uCL is unchanged, because the value proposed in [33] appeared reasonable also for miRNA microarrays.","divisions":[{"label":"Title","span":{"begin":0,"end":33}}],"tracks":[{"project":"2_test","denotations":[{"id":"27600350-2720055-69476967","span":{"begin":149,"end":151},"obj":"2720055"},{"id":"27600350-16822306-69476968","span":{"begin":983,"end":985},"obj":"16822306"},{"id":"27600350-12495158-69476969","span":{"begin":1162,"end":1164},"obj":"12495158"},{"id":"27600350-17365226-69476970","span":{"begin":1995,"end":1997},"obj":"17365226"},{"id":"27600350-17365226-69476971","span":{"begin":3770,"end":3772},"obj":"17365226"}],"attributes":[{"subj":"27600350-2720055-69476967","pred":"source","obj":"2_test"},{"subj":"27600350-16822306-69476968","pred":"source","obj":"2_test"},{"subj":"27600350-12495158-69476969","pred":"source","obj":"2_test"},{"subj":"27600350-17365226-69476970","pred":"source","obj":"2_test"},{"subj":"27600350-17365226-69476971","pred":"source","obj":"2_test"}]}],"config":{"attribute types":[{"pred":"source","value type":"selection","values":[{"id":"2_test","color":"#93acec","default":true}]}]}}