PMC:4764609 / 3384-4356
Annnotations
{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/4764609","sourcedb":"PMC","sourceid":"4764609","source_url":"https://www.ncbi.nlm.nih.gov/pmc/4764609","text":"Many conventional methods have been developed for the removal of heavy metals from effluents such as sedimentation, ion exchange, filtration and membrane processes, electrochemical processes, chemical precipitation and solvent extraction. But these methods are inefficient when the concentrations of metals are low (below 100 ppm), and are also associated with certain disadvantages like high capital investment and operational costs, high sensitivity to operational conditions, significant energy consumption and production of large quantities of waste. To overcome these technical and economical barriers, development of ecofriendly, efficient and low-cost processes is of prime significance. In this aspect, adsorption is regarded as an innovative technology with the advantages of high efficiency and selectivity for adsorbing metals even when present in low concentrations, easy desorption of metals, recycling of the adsorbents and minimization of sludge generation.","tracks":[]}