PMC:4331676 / 18098-19076
Annnotations
{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/4331676","sourcedb":"PMC","sourceid":"4331676","source_url":"https://www.ncbi.nlm.nih.gov/pmc/4331676","text":"In this study, TP, FP, TN and FN donated the numbers of true positives, false positives, true negatives and false negatives, respectively. ACC denotes the percentage of both positive instances and negative instances correctly predicted. SN and SP represent the percentage of positive instances correctly predicted and that of negative instances correctly predicted, respectively. A ROC curve is a plot of Sensitivity versus (1-Specificity) and generated by shifting the decision threshold. AUC gives a measure of classifier performance. An AUC of 1.0 indicates perfect classifier whereas an AUC of classifier no better than random is 0.5. The value of MCC measures the degree of overlap between the predicted labels and true labels of all the samples in the benchmark dataset. It returns a value between -1 and +1. A perfect prediction at 100% accuracy yields a MCC of +1, whereas a random prediction gives a MCC of 0 and a terrible prediction at 0 accuracy produce a MCC of -1.","tracks":[]}