PMC:4307189 / 143-2861
Annnotations
{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/4307189","sourcedb":"PMC","sourceid":"4307189","source_url":"https://www.ncbi.nlm.nih.gov/pmc/4307189","text":"Background\nInitial success of inhibitors targeting oncogenes is often followed by tumor relapse due to acquired resistance. In addition to mutations in targeted oncogenes, signaling cross-talks among pathways play a vital role in such drug inefficacy. These include activation of compensatory pathways and altered activities of key effectors in other cell survival and growth-associated pathways.\n\nResults\nWe propose a computational framework using Bayesian modeling to systematically characterize potential cross-talks among breast cancer signaling pathways. We employed a fully Bayesian approach known as the p1-model to infer posterior probabilities of gene-pairs in networks derived from the gene expression datasets of ErbB2-positive breast cancer cell-lines (parental, lapatinib-sensitive cell-line SKBR3 and the lapatinib-resistant cell-line SKBR3-R, derived from SKBR3). Using this computational framework, we searched for cross-talks between EGFR/ErbB and other signaling pathways from Reactome, KEGG and WikiPathway databases that contribute to lapatinib resistance. We identified 104, 188 and 299 gene-pairs as putative drug-resistant cross-talks, respectively, each comprised of a gene in the EGFR/ErbB signaling pathway and a gene from another signaling pathway, that appear to be interacting in resistant cells but not in parental cells. In 168 of these (distinct) gene-pairs, both of the interacting partners are up-regulated in resistant conditions relative to parental conditions. These gene-pairs are prime candidates for novel cross-talks contributing to lapatinib resistance. They associate EGFR/ErbB signaling with six other signaling pathways: Notch, Wnt, GPCR, hedgehog, insulin receptor/IGF1R and TGF- β receptor signaling. We conducted a literature survey to validate these cross-talks, and found evidence supporting a role for many of them in contributing to drug resistance. We also analyzed an independent study of lapatinib resistance in the BT474 breast cancer cell-line and found the same signaling pathways making cross-talks with the EGFR/ErbB signaling pathway as in the primary dataset.\n\nConclusions\nOur results indicate that the activation of compensatory pathways can potentially cause up-regulation of EGFR/ErbB pathway genes (counteracting the inhibiting effect of lapatinib) via signaling cross-talk. Thus, the up-regulated members of these compensatory pathways along with the members of the EGFR/ErbB signaling pathway are interesting as potential targets for designing novel anti-cancer therapeutics.\n\nElectronic supplementary material\nThe online version of this article (doi:10.1186/s12918-014-0135-x) contains supplementary material, which is available to authorized users.","divisions":[{"label":"sec","span":{"begin":0,"end":396}},{"label":"title","span":{"begin":0,"end":10}},{"label":"p","span":{"begin":11,"end":396}},{"label":"sec","span":{"begin":398,"end":2121}},{"label":"title","span":{"begin":398,"end":405}},{"label":"p","span":{"begin":406,"end":2121}},{"label":"sec","span":{"begin":2123,"end":2543}},{"label":"title","span":{"begin":2123,"end":2134}},{"label":"p","span":{"begin":2135,"end":2543}},{"label":"title","span":{"begin":2545,"end":2578}}],"tracks":[]}