PMC:3463543 / 14677-15773
Annnotations
{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/3463543","sourcedb":"PMC","sourceid":"3463543","source_url":"https://www.ncbi.nlm.nih.gov/pmc/3463543","text":"The relationship between viral decay rates and salt concentrations in the droplets is shown in Figure 2. The four media used in this study and the mucus specimen contained multiple types of salts (Table 1). However, as NaCl was the major salt in all media and the mucus, we estimated the total concentrations of salts in the droplets at equilibrium in terms of equivalent amounts of NaCl; concentrations were estimated empirically [25]. The concentration of NaCl in a droplet is related to RH; however, as indicated by the polynomial function in Eq. 3, the correlation is not simply linear. The viral decay rate in PBS droplets increases linearly with NaCl concentration in the range of 25–510 g L−1, corresponding to 99–50% RH, respectively (R2 = 0.97). Concentrations are lower at high RH because there is less evaporation and vice versa. Likewise, the viral decay rate in DMEM droplets also increases linearly with NaCl concentration up to 420 g L−1, corresponding to 60% RH (R2 = 0.98). In contrast, in media containing FCS, viral decay rates remain constant regardless of NaCl concentration.","tracks":[]}