PMC:3091640 / 9264-11008 JSONTXT

Annnotations TAB JSON ListView MergeView

{"target":"http://pubannotation.org/docs/sourcedb/PMC/sourceid/3091640","sourcedb":"PMC","sourceid":"3091640","source_url":"https://www.ncbi.nlm.nih.gov/pmc/3091640","text":"We next investigated the degree of conservation of DRR pathways. Conservation of DNA safeguarding pathways during evolution was calculated by the average conservation in amino acids and presence/absence of proteins belonging to a given pathway (Figure 1, Additional file 1). Component of different pathways have been defined according to KEGG pathway database. Pathway conservation was measured in three different categories: conservation between rice and human proteins (Figure 1a), conservation between Arabidopsis and human proteins (Figure 1b) and conservation between Arabidopsis and rice proteins (Figure 1c). Plants possess few prokaryotes and Saccharomyces cerevisiae specific DRR proteins also therefore E. coli and Saccharomyces cerevisiae specific proteins were used to compare the conservation level with its plants counterparts. Thus E. coli and Saccharomyces cerevisiae proteins replaced the human proteins in plant-human protein conservation categories and represented as white circles (Figure 1a and 1b). Proteins which are involved in several pathways were also included in each pathway to calculate the average conservation score. The best example was the MRN complex, classified in both NHEJ and HR pathway. In addition to the presence of several interconnections, pathway such as NER was more conserved than others in terms of amino acid identity. All genes of NER pathway revealed a high degree of sequence similarity with their counterparts present in other genomes (Figure 1). In human and plant pairs, NER, BER and HR pathways were very close in terms of identity of amino acid while in Arabidopsis-rice pair, NER and NHEJ pathways were closer to each other, while considering the characteristics of amino acid identity.","tracks":[]}