PMC:2944670 / 36034-37692 JSONTXT

Annnotations TAB JSON ListView MergeView

    TEST0

    {"project":"TEST0","denotations":[{"id":"20877434-185-193-476018","span":{"begin":185,"end":189},"obj":"[\"14550907\"]"},{"id":"20877434-143-151-476019","span":{"begin":878,"end":882},"obj":"[\"15911143\"]"}],"text":"Pioneering work by the groups in Heidelberg and Graz showed for the first time the feasibility of the combination of BCI and a FES-system with surface electrodes (Pfurtscheller et al., 2003). In this study the restoration of a lateral grasp was achieved in a spinal cord injured subject, who suffers from a complete motor paralysis with missing hand and finger function. The patient is able to trigger sequential grasp phases by the imagination of foot movements. After many years of training and use of his BCI, the patient is able to control the system even during conversation with other persons. The same groups did a short-term BCI training of another tetraplegic patient who was provided with a Freehand system in the year 2000. After 3 days of training the patient was able to control the grasp sequence of the implanted neuroprosthesis sufficiently (Müller-Putz et al., 2005). More recently, they introduced a new method for the control of the grasp and elbow function by a BCI (Müller-Putz et al., 2007). The idea is to use a low number of pulse-width coded brain patterns to control sequentially more degrees of freedom. Millán's group used the MI of hand movements to stimulate the same hand for a grasping and writing task (Tavella et al., 2010), so the subjects thought about moving the right arm and the system stimulated the right arm. Furthermore, they used an adaptable passive hand orthosis, which evenly synchronizes the grasping movements and applied forces on all fingers. This orthosis also avoids fatigue in long-term stimulation situations by locking the position of the fingers and switching the stimulation off (Leeb et al., 2010a)."}

    0_colil

    {"project":"0_colil","denotations":[{"id":"20877434-14550907-476018","span":{"begin":185,"end":189},"obj":"14550907"},{"id":"20877434-15911143-476019","span":{"begin":878,"end":882},"obj":"15911143"}],"text":"Pioneering work by the groups in Heidelberg and Graz showed for the first time the feasibility of the combination of BCI and a FES-system with surface electrodes (Pfurtscheller et al., 2003). In this study the restoration of a lateral grasp was achieved in a spinal cord injured subject, who suffers from a complete motor paralysis with missing hand and finger function. The patient is able to trigger sequential grasp phases by the imagination of foot movements. After many years of training and use of his BCI, the patient is able to control the system even during conversation with other persons. The same groups did a short-term BCI training of another tetraplegic patient who was provided with a Freehand system in the year 2000. After 3 days of training the patient was able to control the grasp sequence of the implanted neuroprosthesis sufficiently (Müller-Putz et al., 2005). More recently, they introduced a new method for the control of the grasp and elbow function by a BCI (Müller-Putz et al., 2007). The idea is to use a low number of pulse-width coded brain patterns to control sequentially more degrees of freedom. Millán's group used the MI of hand movements to stimulate the same hand for a grasping and writing task (Tavella et al., 2010), so the subjects thought about moving the right arm and the system stimulated the right arm. Furthermore, they used an adaptable passive hand orthosis, which evenly synchronizes the grasping movements and applied forces on all fingers. This orthosis also avoids fatigue in long-term stimulation situations by locking the position of the fingers and switching the stimulation off (Leeb et al., 2010a)."}

    2_test

    {"project":"2_test","denotations":[{"id":"20877434-14550907-38387001","span":{"begin":185,"end":189},"obj":"14550907"},{"id":"20877434-15911143-38387002","span":{"begin":878,"end":882},"obj":"15911143"}],"text":"Pioneering work by the groups in Heidelberg and Graz showed for the first time the feasibility of the combination of BCI and a FES-system with surface electrodes (Pfurtscheller et al., 2003). In this study the restoration of a lateral grasp was achieved in a spinal cord injured subject, who suffers from a complete motor paralysis with missing hand and finger function. The patient is able to trigger sequential grasp phases by the imagination of foot movements. After many years of training and use of his BCI, the patient is able to control the system even during conversation with other persons. The same groups did a short-term BCI training of another tetraplegic patient who was provided with a Freehand system in the year 2000. After 3 days of training the patient was able to control the grasp sequence of the implanted neuroprosthesis sufficiently (Müller-Putz et al., 2005). More recently, they introduced a new method for the control of the grasp and elbow function by a BCI (Müller-Putz et al., 2007). The idea is to use a low number of pulse-width coded brain patterns to control sequentially more degrees of freedom. Millán's group used the MI of hand movements to stimulate the same hand for a grasping and writing task (Tavella et al., 2010), so the subjects thought about moving the right arm and the system stimulated the right arm. Furthermore, they used an adaptable passive hand orthosis, which evenly synchronizes the grasping movements and applied forces on all fingers. This orthosis also avoids fatigue in long-term stimulation situations by locking the position of the fingers and switching the stimulation off (Leeb et al., 2010a)."}