PMC:2940453 / 10027-11129
Annnotations
{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/2940453","sourcedb":"PMC","sourceid":"2940453","source_url":"https://www.ncbi.nlm.nih.gov/pmc/2940453","text":"Interference principle. (A) The top panel illustrates the times of two APs generated by two adjacent neurons (1) after their alignments to the intracellular SMO (2). Because the only APs that survive are the ones that coincide with the peak of SMO, the propagating oscillation will convert the spatial distance between the two neurons into a slight delay (t1, t2) between the two APs (2). (B) At the transfer stage, due to convergent and divergent synaptic connections, APs from a subset of neurons will merge on a set of projection neurons with low thresholds. Projection neurons sharing input from the same pool will replicate the same compressed AP train (3). (C) The compressed code projects to a large pool of target neurons. Since target neurons have a similar propagating SMO, the projected APs will generate a new AP only on neurons where the AP precisely coincides with the SMO peak (4). This is the interference principle. The red circles represent these coincidences, while open circles are the mismatches. As a result, the APs pattern (t1, t2) recovered the original input pattern from (2).","tracks":[]}