PMC:2940021 / 23678-24461 JSONTXT

Annnotations TAB JSON ListView MergeView

    0_colil

    {"project":"0_colil","denotations":[{"id":"20422195-18769253-60968","span":{"begin":509,"end":511},"obj":"18769253"}],"text":"MFMs are histopathologically characterised by aberrant desmin aggregation and ultrastructurally by myofibrillar degeneration, which led to the introduction of the term `myofibrillar myopathy’ (MFM). Mutations in the human desmin gene (DES) were first shown to be associated with MFM; another form is associated with mutations in the gene encoding αB-crystallin (CRYAB). More recently, mutations in the human Z-disc proteins myotilin (MYOT), ZASP (LDB3) and filamin C (FLNC) have also been shown to cause MFM [51]. Practically, a definitive determination of the MFM subtype can only be established by direct gene sequencing. However, muscle imaging in combination with clinical information is very helpful for separation of distinct MFM subtypes and in scheduling of genetic analysis."}

    2_test

    {"project":"2_test","denotations":[{"id":"20422195-18769253-29368052","span":{"begin":509,"end":511},"obj":"18769253"}],"text":"MFMs are histopathologically characterised by aberrant desmin aggregation and ultrastructurally by myofibrillar degeneration, which led to the introduction of the term `myofibrillar myopathy’ (MFM). Mutations in the human desmin gene (DES) were first shown to be associated with MFM; another form is associated with mutations in the gene encoding αB-crystallin (CRYAB). More recently, mutations in the human Z-disc proteins myotilin (MYOT), ZASP (LDB3) and filamin C (FLNC) have also been shown to cause MFM [51]. Practically, a definitive determination of the MFM subtype can only be established by direct gene sequencing. However, muscle imaging in combination with clinical information is very helpful for separation of distinct MFM subtypes and in scheduling of genetic analysis."}

    TEST0

    {"project":"TEST0","denotations":[{"id":"20422195-139-145-60968","span":{"begin":509,"end":511},"obj":"[\"18769253\"]"}],"text":"MFMs are histopathologically characterised by aberrant desmin aggregation and ultrastructurally by myofibrillar degeneration, which led to the introduction of the term `myofibrillar myopathy’ (MFM). Mutations in the human desmin gene (DES) were first shown to be associated with MFM; another form is associated with mutations in the gene encoding αB-crystallin (CRYAB). More recently, mutations in the human Z-disc proteins myotilin (MYOT), ZASP (LDB3) and filamin C (FLNC) have also been shown to cause MFM [51]. Practically, a definitive determination of the MFM subtype can only be established by direct gene sequencing. However, muscle imaging in combination with clinical information is very helpful for separation of distinct MFM subtypes and in scheduling of genetic analysis."}

    MyTest

    {"project":"MyTest","denotations":[{"id":"20422195-18769253-29368052","span":{"begin":509,"end":511},"obj":"18769253"}],"namespaces":[{"prefix":"_base","uri":"https://www.uniprot.org/uniprot/testbase"},{"prefix":"UniProtKB","uri":"https://www.uniprot.org/uniprot/"},{"prefix":"uniprot","uri":"https://www.uniprot.org/uniprotkb/"}],"text":"MFMs are histopathologically characterised by aberrant desmin aggregation and ultrastructurally by myofibrillar degeneration, which led to the introduction of the term `myofibrillar myopathy’ (MFM). Mutations in the human desmin gene (DES) were first shown to be associated with MFM; another form is associated with mutations in the gene encoding αB-crystallin (CRYAB). More recently, mutations in the human Z-disc proteins myotilin (MYOT), ZASP (LDB3) and filamin C (FLNC) have also been shown to cause MFM [51]. Practically, a definitive determination of the MFM subtype can only be established by direct gene sequencing. However, muscle imaging in combination with clinical information is very helpful for separation of distinct MFM subtypes and in scheduling of genetic analysis."}