PMC:2812708 / 3870-5764
Annnotations
MyTest
{"project":"MyTest","denotations":[{"id":"19242689-15613487-28778238","span":{"begin":665,"end":669},"obj":"15613487"}],"namespaces":[{"prefix":"_base","uri":"https://www.uniprot.org/uniprot/testbase"},{"prefix":"UniProtKB","uri":"https://www.uniprot.org/uniprot/"},{"prefix":"uniprot","uri":"https://www.uniprot.org/uniprotkb/"}],"text":"Combined with the fractionating power of the AUC, application of the MWL detector with its additional structural and/or compositional information on light absorbing samples can yield distributions of the individual components in complex mixtures with respect to composition and size/density related to different chromophores. This can start with relatively straightforward issues like sample homogeneity and purity but can then get increasingly complex in case of composite and/or interacting samples. Especially for such complex samples MWL-AUC has a huge potential, as spectral discrimination can synergistically enhance the hydrodynamic resolution (Balbo et al. 2005). This is also an important issue for any colored industrial product composed of at least two components which at least slightly differ in their UV/vis spectra. In this work, we will show the capabilities of MWL-AUC for the analysis of an industrial composite sample of β-carotene and gelatin. This system was investigated before with X-ray scattering, UV/vis absorption spectroscopy, FOQELS (Fiber-optic quasi-elastic light scattering), microelectrophoresis and on basis of these results, a core-shell structure was presented (Auweter et al. 1999), as shown in Fig. 2. The core structure with 120 nm diameter consists of partially crystallized, partially amorphous β-carotene as active ingredient. The shell structure consists of gelatin, functioning as bio-degradable protection colloid. This hybrid structure self-assembles in a carefully tuned co-precipitation of gelatin (from an aqueous solution) and the active ingredient (from a lipophilic solvent). Such particulate formulations can transport an active ingredient that is not water soluble across an aqueous phase with high bioavailability, in this case provitamin A. These particles are not persistent, but disassemble and get digested quickly in biological media."}
2_test
{"project":"2_test","denotations":[{"id":"19242689-15613487-28778238","span":{"begin":665,"end":669},"obj":"15613487"}],"text":"Combined with the fractionating power of the AUC, application of the MWL detector with its additional structural and/or compositional information on light absorbing samples can yield distributions of the individual components in complex mixtures with respect to composition and size/density related to different chromophores. This can start with relatively straightforward issues like sample homogeneity and purity but can then get increasingly complex in case of composite and/or interacting samples. Especially for such complex samples MWL-AUC has a huge potential, as spectral discrimination can synergistically enhance the hydrodynamic resolution (Balbo et al. 2005). This is also an important issue for any colored industrial product composed of at least two components which at least slightly differ in their UV/vis spectra. In this work, we will show the capabilities of MWL-AUC for the analysis of an industrial composite sample of β-carotene and gelatin. This system was investigated before with X-ray scattering, UV/vis absorption spectroscopy, FOQELS (Fiber-optic quasi-elastic light scattering), microelectrophoresis and on basis of these results, a core-shell structure was presented (Auweter et al. 1999), as shown in Fig. 2. The core structure with 120 nm diameter consists of partially crystallized, partially amorphous β-carotene as active ingredient. The shell structure consists of gelatin, functioning as bio-degradable protection colloid. This hybrid structure self-assembles in a carefully tuned co-precipitation of gelatin (from an aqueous solution) and the active ingredient (from a lipophilic solvent). Such particulate formulations can transport an active ingredient that is not water soluble across an aqueous phase with high bioavailability, in this case provitamin A. These particles are not persistent, but disassemble and get digested quickly in biological media."}