PMC:1867812 / 34286-35300
Annnotations
{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/1867812","sourcedb":"PMC","sourceid":"1867812","source_url":"https://www.ncbi.nlm.nih.gov/pmc/1867812","text":"As proposed in our previous work [5,25], such interactions can be modeled and captured by discovering different types of spatial object association patterns (SOAPs). Essentially, SOAPs characterize the specific way that objects, bit-patterns in this case, are interacting with each other at a given time. Among the proposed SOAP types, after a careful evaluation, we empirically select (minLink = 1) SOAPs to model the interacting bit-patterns in the folding process. Let p = (g1, g2, ⋯, gk) be a (minLink = 1) SOAP of size k, where gi is one of the 10 types of bit-patterns described above. In the context of folding trajectories, p prescribes that there exists k bit-patterns b1, b2, ..., bk in a conformation, where bi.label = gi (1 ≤ i ≤ k). Furthermore, for each bi, it interacts with at least one of the remaining (k - 1) bit-patterns. Note that the k labels in p are not mutually exclusive. For instance, one can have SOAPs such as (7 9 9), which involves one type 7 bit-pattern and two type 9 bit-patterns.","tracks":[]}