PMC:1867812 / 21916-23029 JSONTXT

Annnotations TAB JSON ListView MergeView

{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/1867812","sourcedb":"PMC","sourceid":"1867812","source_url":"https://www.ncbi.nlm.nih.gov/pmc/1867812","text":"• Slope: the general linear distribution trend of all the 1s in the pattern within its MBR. To compute the angle of a connected pattern we use the least-squares method to estimate the slope of a linear regression line. For a pattern containing n 1s, we denote the positions of the 1s as: (x1, y1)...(xn, yn). The least-squares method then estimates the slope β1 as: β1=∑i=1n((xi−x¯)∗(yi−y¯))/∑i=1n((xi−x¯)2) MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaaiiGacqWFYoGydaWgaaWcbaGaeGymaedabeaakiabg2da9maaqadabaGaeiikaGIaeiikaGIaemiEaG3aaSbaaSqaaiabdMgaPbqabaGccqGHsislcuWG4baEgaqeaiabcMcaPiabgEHiQiabcIcaOiabdMha5naaBaaaleaacqWGPbqAaeqaaOGaeyOeI0IafmyEaKNbaebacqGGPaqkcqGGPaqkcqGGVaWldaaeWaqaaiabcIcaOiabcIcaOiabdIha4naaBaaaleaacqWGPbqAaeqaaOGaeyOeI0IafmiEaGNbaebacqGGPaqkdaahaaWcbeqaaiabikdaYaaakiabcMcaPaWcbaGaemyAaKMaeyypa0JaeGymaedabaGaemOBa4ganiabggHiLdaaleaacqWGPbqAcqGH9aqpcqaIXaqmaeaacqWGUbGBa0GaeyyeIuoaaaa@5A04@","tracks":[]}