PMC:1679804 / 1397-25341 JSONTXT

Annnotations TAB JSON ListView MergeView

    2_test

    {"project":"2_test","denotations":[{"id":"17118189-10487868-1688062","span":{"begin":521,"end":522},"obj":"10487868"},{"id":"17118189-16093699-1688063","span":{"begin":1504,"end":1505},"obj":"16093699"},{"id":"17118189-8324630-1688064","span":{"begin":1897,"end":1898},"obj":"8324630"},{"id":"17118189-8697238-1688064","span":{"begin":1897,"end":1898},"obj":"8697238"},{"id":"17118189-14980017-1688064","span":{"begin":1897,"end":1898},"obj":"14980017"},{"id":"17118189-12584121-1688065","span":{"begin":18756,"end":18757},"obj":"12584121"},{"id":"17118189-11988759-1688066","span":{"begin":18758,"end":18760},"obj":"11988759"},{"id":"17118189-8324630-1688067","span":{"begin":19676,"end":19677},"obj":"8324630"},{"id":"17118189-8697238-1688068","span":{"begin":19678,"end":19679},"obj":"8697238"},{"id":"17118189-14980017-1688069","span":{"begin":20406,"end":20407},"obj":"14980017"},{"id":"17118189-12824369-1688070","span":{"begin":22384,"end":22386},"obj":"12824369"},{"id":"17118189-15980505-1688071","span":{"begin":22398,"end":22400},"obj":"15980505"},{"id":"17118189-8532532-1688072","span":{"begin":22421,"end":22423},"obj":"8532532"},{"id":"17118189-15860560-1688073","span":{"begin":22424,"end":22426},"obj":"15860560"},{"id":"17118189-12520026-1688074","span":{"begin":22518,"end":22520},"obj":"12520026"},{"id":"17118189-8324630-1688075","span":{"begin":23576,"end":23577},"obj":"8324630"},{"id":"17118189-8697238-1688076","span":{"begin":23578,"end":23579},"obj":"8697238"}],"text":"Background\nSearching biological sequence(s) for motifs is a fundamental task in bioinformatics. Motifs can be represented as either patterns over a specific alphabet, or profiles (also called positional weight matrix (PWM)), which give the probability of observing each symbol in each position. Motifs can be classified into two main types. If no variable gaps are allowed in the motif, it is called a simple motif. For example, in the genome of Saccharomyces cerevisiae, the binding sites of transcription factor, GAL4 [1], can be characterized by the simple motif shown in Table 1, which illustrates the pattern over the IUPAC alphabet (ΣIUPAC; see Table 2), as well as its profile (which gives the frequency of each DNA base at each position). The motif in Table 1 only consists of one component and thus is a simple motif. Since the symbols in the first 3 positions (CGS) and in the last 3 positions (SCG) are well conserved, we can also represent this motif as CGS[11,11]SCG, where [11,11] means that there is a fixed \"gap\" of length 11 between the two components. If variable gaps are allowed in a motif, it is called a structured motif. A structured motif can be regarded as an ordered collection of simple motifs with gap constraints between each pair of adjacent simple motifs. For example, the LTR retrotransposons from the Copia group, corresponding to genes encoding reverse transcriptase, in A. thaliana can be characterized by the structured motif M1 [2,5] M2 [6,7] M3, as shown in Table 3[2]. Here M1, M2 and M3 are three simple motifs; [2,5] and [6,7] are variable gap constraints ([minimum gap, maximum gap]) allowed between the adjacent simple motifs. Note that each simple motif Mi (with 1 ≤ i ≤ 3) can either be a pattern over ΣIUPAC or a profile over ΣDNA. Searching for structured motifs is more complicated than searching for simple motifs, and is an ongoing research area [3-7]. The sequence to be searched can be very long, e.g., chromosome 1 of Homo Sapiens contains 245 million (245M) base pairs. The structured motif can also be as long as several kilobases. All these factors need to be considered when designing an efficient structured motif search algorithm.\nTable 1 A Simple Motif\nSymbols Motif\nA 0 0 0 4 1 1 7 0 5 1 0 2 0 2 0 0 0\nC 10 0 1 2 3 5 0 7 0 4 2 5 5 1 9 10 0\nG 0 10 9 4 5 3 2 3 0 3 1 1 4 1 1 0 10\nT 0 0 0 0 1 1 1 0 5 2 7 2 1 6 0 0 0\nIUPAC C G S V N N D S W N B N B N S C G\nThe binding sites for the transcription factor GAL4 in S. cerevisiae satisfy this motif [1]. Rows 2–5 show the profile (the frequency of observing a DNA base in a given position). The last row shows the corresponding pattern over the IUPAC alphabet.\nTable 2 IUPAC Alphabet (ΣIUPAC)\nSymbol A C G T U R Y K\nBases A C G T U A,G C,T G,T\nSymbol M S W B D H V N\nBases A,C G,C A,T C,G,T A,G,T A,C,T A,C,G A,C,G,T\nTable 3 A Structured Motif\nSymbols M 1 M 2 M 3\nA 2 12 17 1 11 1 35 0 24 1 0 3 1 35\nC 0 10 8 5 2 0 0 19 0 0 25 5 35 1\nG 2 5 5 2 10 34 1 0 0 26 11 0 0 0\nT 32 9 6 28 13 1 0 17 12 9 0 28 0 0\nIUPAC D N N N N D R Y W D S H M M\nWe aligned the 36 A. thaliana LTR retrotransposons from Repbase Update [2] database which belong to Copia group corresponding to genes encoding reverse transcriptase to obtain the structured motif M1 [2,5] M2 [6,7] M3. Rows 2–5 show the profile (the frequency of observing a DNA base in a given position), and the last row shows the corresponding pattern over the IUPAC alphabet. More formally, a structured motif ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@, is specified in the form: M1 [l1, u1] M2 [l2, u2] M3 ... Mk-1 [lk-1, uk-1] Mk, where Mi, 1 ≤ i ≤ k, is a simple motif component; and li and ui (with 0 ≤ li ≤ ui), 1 ≤ i \u003ck, are the minimum and maximum length of the gap allowed between Mi and Mi+1, respectively. Note that a gap is defined to be the number of intervening positions after Mi but before Mi+1. In other words if si and ei represent the start and end positions of component Mi, then for i ∈ [1, k - 1], the length of the gap between Mi and Mi+1 is given as gi = ei+1 - si - 1, and we require that gi ∈ [li, ui]. We use |Mi| to denote the number of symbols/positions in component Mi, also called the length of the component, and we use |ℳ|=∑i=1k|ℳi| MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaacqGG8baFimaacqWFZestcqGG8baFcqGH9aqpdaaeWaqaaiabcYha8jab=ntinnaaBaaaleaacqWGPbqAaeqaaOGaeiiFaWhaleaacqWGPbqAcqGH9aqpcqaIXaqmaeaacqWGRbWAa0GaeyyeIuoaaaa@47FF@ to denote the total length of the structured motif ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ (not counting gaps). The maximum span, L, of the motif ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ is the maximum number of positions that can be occupied by the structured motif, which is given as L=∑i=1k|Mi|+∑i=1k−1ui MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaqabeGadaaakeaacqWGmbatcqGH9aqpdaaeWaqaaiabcYha8jabd2eannaaBaaaleaacqWGPbqAaeqaaOGaeiiFaWNaey4kaSYaaabmaeaacqWG1bqDdaWgaaWcbaGaemyAaKgabeaaaeaacqWGPbqAcqGH9aqpcqaIXaqmaeaacqWGRbWAcqGHsislcqaIXaqma0GaeyyeIuoaaSqaaiabdMgaPjabg2da9iabigdaXaqaaiabdUgaRbqdcqGHris5aaaa@4799@. The structured motif ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ can be either specified as a pattern or a profile. When ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ denotes a pattern, we use the notation ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@j to denote the symbol at position j in the motif, and when ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ denotes a profile, we use the notation ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@xj to denote the frequency of symbol x ∈ ΣDNA at position j, where j ∈ [1, |ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@|]. Table 3 shows both the pattern and profile representation of an example structured motif with three components.\nGiven a collection of sequences, S MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFse=uaaa@3845@, over the DNA alphabet ΣDNA = {A,C,G,T}, and a structured motif, ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@, the structured motif search problem is to report all the occurrences (or matches) of ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ in S MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFse=uaaa@3845@. The occurrence set of the structured motif, given as O MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFoe=taaa@383D@, can be reported in two forms: a) full positions: list of the positions for each symbol in ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@, for all possible matches in S MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFse=uaaa@3845@, or b) start positions: list of the starting positions of ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ for each match in S MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFse=uaaa@3845@. Table 4 shows an example sequence S MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFse=uaaa@3845@ and a structured motif ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@, where M1 = CG, M2 = TTA and M3 = CAT, and [0, 1] and [1,4] are the intervening gap ranges between M1 and M2, and M2 and M3, respectively. The motif has k = 3 components, it length is |ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@| = 8 and its maximum span is L = 13. The occurrence set of full positions is O MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFoe=taaa@383D@ = {(5,6,8,9,10,12,13,14), (5,6,8,9,10,15,16,17)}, and of start positions is O MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFoe=taaa@383D@ = {5}.\nDepending on the application, the structured motif search problem can have several variations:\nTable 4 Structured Motif Search\nSequence (S ∈ S MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFse=uaaa@3845@): GCATGCGTTAGCATCATC\nStructured Motif (ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@): GC[0,1]TTA[1,4]CAT\nOccurrences of ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ in S MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFse=uaaa@3845@ are marked in bold. • Missing Components: The matching motifs can consist of some, instead of all, the simple motifs in ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@, allowing for at most q missing components.\n• Approximate Matches: The matching motifs may consist of similar motifs (as measured by Hamming or Levenshtein distance [8]), instead of exact matches, to the simple motifs in ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@, allowing for at most εi errors for simple motif Mi (when ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ is expressed as a pattern).\n• Overlapping Components: The variable gap constraints (li and ui) can take on a limited range of negative values, allowing search for overlapping simple motifs. We allow two adjacent components Mi and Mi+1 to overlap, but we require that Mi+1 does not precede Mi. This condition can be satisfied by the following constraints on the gap range [li, ui]: - |Mi| ≤ li ≤ ui, for i ∈ [1, k). For example the search for motif ACG[-2,2]CGA, can discover the overlapped occurrence ACGA, as well as the non-overlapped occurrence ACG- -CGA, at the two extremes of the gap range.\n• Profile Search: The components of the motif ℳ MathType@MTEF@5@5@+=feaafiart1ev1aaatCvAUfKttLearuWrP9MDH5MBPbIqV92AaeXatLxBI9gBamrtHrhAL1wy0L2yHvtyaeHbnfgDOvwBHrxAJfwnaebbnrfifHhDYfgasaacH8akY=wiFfYdH8Gipec8Eeeu0xXdbba9frFj0=OqFfea0dXdd9vqai=hGuQ8kuc9pgc9s8qqaq=dirpe0xb9q8qiLsFr0=vr0=vr0dc8meaabaqaciaacaGaaeqabaWaaeGaeaaakeaaimaacqWFZestaaa@3790@ can be specified as a pattern in either the DNA (ΣDNA) or IUPAC (ΣIUPAC) alphabets, or as a profile over ΣDNA.\nIn this paper, we focus on the problem of searching for a given structured motif in one or more sequences. We propose SMOTIF, an efficient algorithm for structured motif searches. It uses an inverted index of symbol positions, and it finds all occurrences by positional joins over this index. For structured pattern search problem, we propose two main variants of our approach: i) a direct search for simple motifs and the structured motif via positional joins, and ii) a two-step approach, where we use a suffix tree to search for simple motifs and then use positional joins for the structured motif. For structured profile search problem, we first search each simple motif by aligning its profile with the sequences, and then search structured motifs with positional joins. SMOTIF allows missing components, overlapping motifs, and also approximate matches (when using the two-step approach). SMOTIF also allows flexible matches using IUPAC symbols.\nWe apply SMOTIF for searching long DNA sequences for LTR retrotransposons, which constitute a substantial fraction of most Eukaryotic genomes and are believed to have a significant impact on genome structure and function [9,10]. We show that SMOTIF is effective in searching for composite regulatory patterns, and it can also suggest potentially new binding sites. We experimentally demonstrate the superiority of SMOTIF over SMARTFINDER, a state-of-the-art method for structured motif search, both in terms of time and space; SMOTIF can be up to 7 times faster and can consume 100 times less space.\n\nRelated work\nMany existing pattern matching algorithms [8,11-18] can be used to solve the simple pattern search problem. Given the sequence length, n, and the pattern length, m, exact matching algorithm can run in O (n + m) [11]; approximate matching algorithm can run in O (rn) [16,17] or O (nm/w) [18], where r is the error threshold and w is the size of a computer word. The space complexity is O (n) for both exact matching and approximate matching.\nSeveral previous efforts have focused on the structured pattern search problem. Anrep [3,4] provides a unified biosequence pattern representation by using network expressions with spacers, where a network expression is a regular expression without Kleene closure. With network expressions, one can specify the scoring scheme and the threshold of approximate matching for each simple motif separately, the positional weights which express the relative importance of different parts of a motif, and whether a simple motif is optional. Anrep introduces a two-step approach: first it searches for simple motifs by a threshold-sensitive motif matching algorithm and then it finds the structured motif by an optimized backtracking matching algorithm. However, as compared by [6], Anrep is much slower than SMARTFINDER.\nIn [5], the structured motif is called a Classes of Characters and Bounded Gaps (CBG) expression and is represented by a non-deterministic ε-automaton with bit parallelism. Two algorithms are proposed for CBG expression search: forward search and backward search. Bit parallelism speeds up the search, but is adequate only for a pattern whose maximum span is smaller than the length of the computer word. Also the implementation of CBG can only handle such pattern. This limits the application of CBG to searching for patterns with small number of symbols and gaps.\nSMARTFINDER [6,7], which is currently the most efficient method for structured motif search, is also a two-step approach. In the first step each simple motif is searched separately by building a suffix tree for the sequence. This step outputs the ordered occurrence lists of all simple motifs. The second step solves a constraint satisfaction problem by considering constraints individually in three sub-steps. First it considers the gap constraints and builds a constraint graph whose nodes are the simple motif occurrences and edges connect all possible pairs of nodes that locally satisfy the gap constraints. It then considers the constraint for the maximum number of missing components and shrinks the graph to contain only the nodes that can be in the structured motif occurrences. Finally it enumerates all the valid occurrences by a depth first search (DFS). Notable differences in SMOTIF and SMARTFINDER are as follows: we search patterns directly by positional joins over an inverted index, we consider variable gap constraints during the positional joins as opposed to building a constraint graph, and we handle missing components more efficiently by considering them over patterns instead of over each occurrence as in SMARTFINDER. Note also that like Anrep and SMARTFINDER, SMOTIF can also mine approximate patterns, when using the two-step approach, which we describe later.\nFor profile search, MATCH [19], P-Match [20], and MatInspector [21,22] search DNA sequences against a position weight matrix library (such as TRANSFAC database [23]) and report the occurrences that satisfy given score thresholds. They compute the matrix score by multiplying the base frequency with the information content value at each position, in order to emphasize the fact that mismatches at less conserved positions are more easily tolerated than mismatches at highly conserved positions. Besides the matrix score, they define a core region, which is usually the first 4–5 most conserved consecutive positions of the matrix, and perform the core score threshold check. Then they align the matrix to each position of the sequence and calculate the core score and matrix score. However, these algorithm don't consider the prior probability of each base when calculating the matrix (or core) score, and the core region is required to be consecutive. They need to check all positions of each subsequence (at least all the core positions) in order to calculate the matrix (core) score. Moreover, these algorithms only work on simple profile with one single matrix component. For structured profile search, only Anrep [3,4] provides the capability to model structured profiles, with its general network expressions. However, Anrep doesn't give a solution on score calculation and fast search for structured profiles. Moreover, its implementation doesn't support structured profile search. To our knowledge, SMOTIF is the only implemented method that can handle structured profile search."}