PMC:1624833 / 2681-3642
Annnotations
2_test
{"project":"2_test","denotations":[{"id":"16952321-14737187-1695214","span":{"begin":93,"end":94},"obj":"14737187"},{"id":"16952321-12689096-1695214","span":{"begin":93,"end":94},"obj":"12689096"},{"id":"16952321-10977070-1695214","span":{"begin":93,"end":94},"obj":"10977070"},{"id":"16952321-11035779-1695214","span":{"begin":93,"end":94},"obj":"11035779"},{"id":"16952321-12671006-1695214","span":{"begin":93,"end":94},"obj":"12671006"},{"id":"16952321-12603020-1695214","span":{"begin":93,"end":94},"obj":"12603020"},{"id":"16952321-12740579-1695214","span":{"begin":93,"end":94},"obj":"12740579"},{"id":"16952321-14534190-1695214","span":{"begin":93,"end":94},"obj":"14534190"},{"id":"16952321-14973197-1695214","span":{"begin":93,"end":94},"obj":"14973197"},{"id":"16952321-10977068-1695215","span":{"begin":243,"end":245},"obj":"10977068"},{"id":"16952321-14764572-1695216","span":{"begin":246,"end":248},"obj":"14764572"},{"id":"16952321-12689096-1695217","span":{"begin":273,"end":274},"obj":"12689096"},{"id":"16952321-10977070-1695218","span":{"begin":275,"end":276},"obj":"10977070"},{"id":"16952321-12603020-1695219","span":{"begin":340,"end":342},"obj":"12603020"}],"text":"A number of different methods have emerged for computing biclusters in gene expression data [4-16]; two papers survey these techniques [17,18]. These algorithms use different strategies to compute biclusters such as exhaustive enumeration [16,19,20], iterated improvement [5,6], repeated random sampling [11], and expectation maximization [12]. An issue all these algorithms deal with is trying to avoid outputting two or more biclusters with nearly the same set of samples and/or genes. A common approach is to remove a bicluster from the output if it shares a large fraction of genes and/or samples (based on a user-defined threshold) with an already computed bicluster. Another approach replaces the expression values in a bicluster with random values in order to prevent that bicluster from being computed again. In spite of these measures, biclustering algorithms may compute tens, hundreds, or even thousands of biclusters with varying degrees of overlap."}