PMC:1524773 / 26538-27559
Annnotations
{"target":"https://pubannotation.org/docs/sourcedb/PMC/sourceid/1524773","sourcedb":"PMC","sourceid":"1524773","source_url":"https://www.ncbi.nlm.nih.gov/pmc/1524773","text":"Again, the deletion of a semi-square will result in an addend of out to the runtime, and we have to check for equality and extensibility. Thus, our theoretical runtime is O(|Q| * n3+ out) which in the worst case is given by O(n6). Note that for real data sets this theoretical runtime will not be reached: First of all, intervals have very different lengths and therefore not all of them will be active at the same time. Second, most of the time the set Z of candidates for the extensibility test is very small. The same is true for the set of cliques with the same height of their lowest basis. Since the test for extensibility and uniqueness are the most expensive steps in the algorithm, this shows why the implementation can be so fast in real data sets, as will be demonstrated in section 5. But first we will give a more elaborated algorithm that shows that the runtime complexity of finding all maximal cliques in c-max-tolerance graphs is considerably lower than the corresponding runtime in max-tolerance graphs.","tracks":[]}